Übungen zur Vorlesung Teilchen und Felder I

(WiSe 2014/15, Übungsblatt 13)

http://www.condmat.uni-oldenburg.de/TeachingTUF/TUF.html

Abgabe: Donnerstag, 29. Januar bis 12:00 Uhr

49) Der Compton-Effekt

Photonen sind Teilchen ohne Ruhemasse. Ihre Energie-Impuls-Beziehung lautet daher einfach $E_{\gamma} = |\vec{p}|c$, so dass ihr Viererimpuls in der Form $q^{\mu} = E_{\gamma}/c(1, \vec{n})$ geschrieben werden kann, wobei der normierte Vektor \vec{n} die Richtung des Photons angibt. Über die Beziehung

$$E_{\gamma} = h\nu = \frac{hc}{\lambda}$$

hängt weiterhin die Energie eines Photons mit seiner Wellenlänge λ zusammen; dabei ist h die Plancksche Konstante und ν die Frequenz des Photons.

Ein solches Photon werde an einem ruhenden Elektron gestreut. Benutzen Sie die Erhaltung des gesamten Viererimpulses, um die Wellenlängenänderung $\Delta\lambda$ des Photons bei dem Streuereignis durch den Streuwinkel ϑ auszudrücken. Wie groß (numerisch!) ist der maximale Wert, den $\Delta\lambda$ annehmen kann? (2P)

50) Die Bianchi-Identität

Zeigen Sie unter Rückgriff auf nur die Definition des Feldstärketensors, dass der "duale" Feldstärketensor $F^{*\mu\nu}=\varepsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}$ die Identität

$$\partial_{\mu}F^{*\mu\nu} = 0$$

erfüllt. Was besagt diese Identität, wenn man sie in Komponenten ausschreibt? (1P)

51) Lorentz-Transformation der Felder

Ein Inertialsystem Σ' bewege sich relativ zu einem Inertialsystem Σ mit einer konstanten Geschwindigkeit v in Richtung der positiven x-Achse, so dass für t=t'=0 die Ursprünge beider Systeme zusammenfallen.

- a) Zeigen Sie, dass sich der Feldstärketensor $F^{\mu\nu}$ unter Lorentz-Transformationen in der Tat wie ein Tensor zweiter Stufe verhält.
- b) Ein Beobachter in Σ' registriere ein elektrisches Feld \vec{E}' und ein magnetisches Feld \vec{B}' . Zeigen Sie, dass für einen Beobachter in Σ die Komponenten der Felder gegeben werden

durch

$$E_{x} = E'_{x} ; B_{x} = B'_{x} ;
E_{y} = \frac{E'_{y} + vB'_{z}}{\sqrt{1 - v^{2}/c^{2}}} ; B_{y} = \frac{B'_{y} - (v/c^{2})E'_{z}}{\sqrt{1 - v^{2}/c^{2}}} ;
E_{z} = \frac{E'_{z} - vB'_{y}}{\sqrt{1 - v^{2}/c^{2}}} ; B_{z} = \frac{B'_{z} + (v/c^{2})E'_{y}}{\sqrt{1 - v^{2}/c^{2}}} .$$

- c) Zeigen Sie: Verschwindet das magnetische (elektrische) Feld in Σ' , so erfährt ein Beobachter in Σ dennoch ein magnetisches (elektrisches) Feld, das senkrecht zur Richtung der Geschwindigkeit und zur Richtung des elektrischen (magnetischen) Feldes in Σ ausgerichtet ist.
- d) Im Ursprung von Σ' ruhe eine elektrische Ladung q. Drücken Sie das von dieser Ladung in Σ erzeugte elektrische Feld aus durch den Vektor $\vec{R} = \vec{r} \vec{v}t$, der von der momentanen Position der Ladung in Σ zum Beobachtungspunkt \vec{r} weist.
- e) Welche Form besitzt daher das magnetische Feld, das von der bewegten Ladung q in Σ erzeugt wird? (5P)

52) Divergenz und Gaußscher Satz in vier Dimensionen

Betrachten Sie ein kleines vierdimensionales Volumen $\Delta\Omega = \Delta x_0 \Delta x_1 \Delta x_2 \Delta x_3$ mit Begrenzungslinien parallel zu den Koordinatenachsen und berechnen Sie näherungsweise den Fluss $\int_{\partial\Delta\Omega} dS^{\mu}A_{\mu}$ eines Feldes $A_{\mu}(x_{\nu})$ durch die dreidimensionale Oberfläche $\partial\Delta\Omega$ von $\Delta\Omega$, um zu zeigen, dass

$$\lim_{\Delta\Omega \to 0} \frac{1}{\Delta\Omega} \int_{\partial\Delta\Omega} \mathrm{d}S^{\mu} A_{\mu} = \partial^{\mu} A_{\mu}$$

eine Darstellung der vierdimensionalen Divergenz des Feldes A_{μ} ist. Wie sind hier die "Flächenvektoren" d S^{μ} zu definieren? Nutzen Sie diese Darstellung von $\partial^{\mu}A_{\mu}$, um ein vierdimensionales Analogon des Gaußschen Satzes zu formulieren. (2P)