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Maxwell’s equations in free space

• Maxwell’s equations:
∇ · B(r) = 0 ∇× E(r) = −Ḃ(r)

∇ · E(r) = 0 ∇× B(r) = 1

c2
Ė(r)

• introduce vector potential in Coulomb gauge B(r) = ∇× A(r) and E(r) = −Ȧ(r) with
∇ · A(r) = 0 (transversality condition)

• wave equation for vector potential

∆A(r, t)−
1

c2
Ä(r, t) = 0

• separation of variables (mode decomposition)

A(r, t) =
∑
λ

Aλ(r)uλ(t)
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∇ · A(r) = 0 (transversality condition)

• wave equation for vector potential

∆A(r, t)−
1

c2
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Ė(r)

• introduce vector potential in Coulomb gauge B(r) = ∇× A(r) and E(r) = −Ȧ(r) with
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∇ · E(r) = 0 ∇× B(r) = 1

c2
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Classical Hamiltonian

• Mode decomposition in cartesian coordinates

A(r, t) =
∑
σ

∫
d3k

(2π)3/2
eσ

[
ukσe

i(k·r−ωt) + u∗
kσe
−i(k·r−ωt)

]
• classical Hamiltonian

H =
1

2

∫
d3r

[
ε0E

2(r) +
1

µ0
B2(r)

]
= 2ε0

∑
σ

∫
d3k ω2|ukσ |2

• define qkσ =
√
ε0(ukσ + u∗

kσ) and pkσ = −iω√ε0(ukσ − u∗
kσ)

• Hamiltonian turns into

H =
1

2

∑
σ

∫
d3k (p2

kσ+ω2q2
kσ)

⇒ infinite sum of uncoupled harmonic oscillators with frequencies ω = |k|c

11th April 2016, 613th HE Seminar, Bad Honnef Introduction to macroscopic QED and its applications | Stefan Scheel 6 / 35



Classical Hamiltonian

• Mode decomposition in cartesian coordinates

A(r, t) =
∑
σ

∫
d3k

(2π)3/2
eσ

[
ukσe

i(k·r−ωt) + u∗
kσe
−i(k·r−ωt)

]
• classical Hamiltonian

H =
1

2

∫
d3r

[
ε0E

2(r) +
1

µ0
B2(r)

]
= 2ε0

∑
σ

∫
d3k ω2|ukσ |2

• define qkσ =
√
ε0(ukσ + u∗

kσ) and pkσ = −iω√ε0(ukσ − u∗
kσ)

• Hamiltonian turns into

H =
1

2

∑
σ

∫
d3k (p2

kσ+ω2q2
kσ)

⇒ infinite sum of uncoupled harmonic oscillators with frequencies ω = |k|c

11th April 2016, 613th HE Seminar, Bad Honnef Introduction to macroscopic QED and its applications | Stefan Scheel 6 / 35



Classical Hamiltonian

• Mode decomposition in cartesian coordinates

A(r, t) =
∑
σ

∫
d3k

(2π)3/2
eσ

[
ukσe

i(k·r−ωt) + u∗
kσe
−i(k·r−ωt)

]
• classical Hamiltonian

H =
1

2

∫
d3r

[
ε0E

2(r) +
1

µ0
B2(r)

]
= 2ε0

∑
σ

∫
d3k ω2|ukσ |2

• define qkσ =
√
ε0(ukσ + u∗

kσ) and pkσ = −iω√ε0(ukσ − u∗
kσ)

• Hamiltonian turns into

H =
1

2

∑
σ

∫
d3k (p2

kσ+ω2q2
kσ)

⇒ infinite sum of uncoupled harmonic oscillators with frequencies ω = |k|c

11th April 2016, 613th HE Seminar, Bad Honnef Introduction to macroscopic QED and its applications | Stefan Scheel 6 / 35



Classical Hamiltonian

• Mode decomposition in cartesian coordinates

A(r, t) =
∑
σ

∫
d3k

(2π)3/2
eσ

[
ukσe

i(k·r−ωt) + u∗
kσe
−i(k·r−ωt)

]
• classical Hamiltonian

H =
1

2

∫
d3r

[
ε0E

2(r) +
1

µ0
B2(r)

]
= 2ε0

∑
σ

∫
d3k ω2|ukσ |2

• define qkσ =
√
ε0(ukσ + u∗

kσ) and pkσ = −iω√ε0(ukσ − u∗
kσ)

• Hamiltonian turns into

H =
1

2

∑
σ

∫
d3k (p2

kσ+ω2q2
kσ)

⇒ infinite sum of uncoupled harmonic oscillators with frequencies ω = |k|c

11th April 2016, 613th HE Seminar, Bad Honnef Introduction to macroscopic QED and its applications | Stefan Scheel 6 / 35



Quantization
• replace c -number functions qkσ , pkσ by operators q̂kσ , p̂kσ
• postulate equal-time commutation relations [q̂kσ , p̂k′σ′ ] = i~δ(k− k′)δσσ′

• define creation and annihilation operators

âσ(k) =

√
ω

2~

(
q̂kσ +

i p̂kσ

ω

)
, â†σ(k) =

√
ω

2~

(
q̂kσ −

i p̂kσ

ω

)
with equal-time commutation relations[

âσ(k), â†
σ′ (k

′)
]

= δ(k−k′)δσσ′

• shorthand notation λ ≡ (k, σ)⇒ Â(r) =
∑
λ

[Aλ(r)âλ + h.c.]

• Hamiltonian

Ĥ =
∑
λ

~ωλ
(
â
†
λâλ +

1

2

)
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Quantization in absorbing media — naive approach

naive introduction of a (necessarily complex) refractive index n(ω) leads to decaying commutation rules

[
â(ω, t), â†(ω′, t)

]
= e−nIωtδ(ω − ω′)

common solution: ad hoc introduction of Langevin noise: from time evolution of expectation values

〈â(t)〉 = e−(iω+Γ/2)t〈â(0)〉 and corresponding differential equation
d

dt
〈â〉 = −(iω + Γ/2)〈â〉

it does not follow that ˙̂a = −(iω + Γ/2)â

instead:

˙̂a = −(iω + Γ/2)â + f̂

[
f̂ (t1), f̂ †(t2)

]
e iω(t1−t2) = Γδ(t1 − t2)[

â(t1), f̂ †(t2)
]

= 0 , t2 > t1
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Fluctuations in electromagnetism — Rytov’s approach

linear response of polarisation to electric field is not complete without adding fluctuations:

P(r, ω) = ε0χ(r, ω)E(r, ω)+PN(r, ω)

noise polarisation PN(r, ω) with correlations (linear fluctuation-dissipation theorem)

〈PN(r, ω)⊗ P∗N(r′, ω′)〉 =
2kBTε0

πω
Imχ(r, ω)δ(r − r′)δ(ω − ω′)I

modified macroscopic Helmholtz equation:

∇×∇× E(r, ω)−
ω2

c2
ε(r, ω)E(r, ω) =

ω2

ε0c2
PN(r, ω)

S.M. Rytov, Theory of Electrical Fluctuations and Thermal Radiation (Acad. Sci. Press, Moscow, 1953); Sov. Phys. JETP 6, 130 (1958).
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Langevin forces and open quantum systems

simplest (Caldeira–Leggett) model of harmonic oscillator â coupled to a large number of reservoir
harmonic oscillators b̂i

Ĥ = Ĥsys + Ĥres + Ĥint , Ĥres =
∑
i

~ωi b̂†i b̂i , Ĥint = ~
∑
i

gi â
†b̂i + h.c.

Heisenberg’s equations of motion after formal integration of b̂i in Markov approximation:

˙̂a(t) = −(iω + iδω + Γ/2)â(t) + f̂ (t)

with

Γ = 2π
∑
i

|gi |2δ(ω − ωi ) , δω =
∑
i

|gi |2P
1

ω − ωi
, f̂ (t) = −i

∑
i

gi e
−iωi t b̂i (0)

G.W. Ford, M. Kac, and P. Mazur, J. Math. Phys. 6, 504 (1965); H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press,
Oxford, 2002).
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Huttner–Barnett model of absorbing dielectrics

a(k), a*(k) b(k,ω), b*(k,ω)

(k,ω), *(k,ω)CC

a(k), a*(k) (k,ω),B*(k,ω)B

*b (k)(k), b

Λ( )k

(ω)vMatter polarization Reservoir variables

Polariton−type field

Dressed−matter fieldElectromagnetic field

Electromagnetic field α

two-step Fano diagonalisation provides construction of noise fields from microscopic (Hopfield) model of
absorbing dielectrics⇒ microscopic justification of the validity of noise polarisation, i.e. Rytov theory

B. Huttner and S.M. Barnett, Phys. Rev. A 46, 4306 (1992); L.G. Suttorp and M. Wubs, Phys. Rev. A 70, 013816 (2004).
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Green function expansion of the electromagnetic field
Helmholtz equation

∇×∇× Ê(r, ω)−
ω2

c2
ε(r, ω)Ê(r, ω) =

ω2

c2ε0
P̂N(r, ω)

polariton field connected to electromagnetic fields via Green function of the Helmholtz equation

Ê(r, ω) =
ω2

c2ε0

∫
d3s G(r, s, ω) · P̂N(s, ω) , P̂N(r, ω) = i

ω2

c2

√
~
πε0

εI (r, ω)f̂(r, ω)

read as linear response relation between electric field and noise polarisation with Green function acting
as response function

〈Ê(r, ω)⊗ Ê†(r′, ω′)〉 ∝ ImG(r, r′, ω)δ(ω − ω′)

T. Gruner and D.-G. Welsch, Phys. Rev. A 53, 1818 (1996); T.D. Ho, L. Knöll, and D.-G. Welsch, Phys. Rev. A 57, 3931 (1998); S. Scheel and D.-G. Welsch, Phys.
Rev. A 58, 700 (1998); T.D. Ho, S.Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, Phys. Rev. A 68, 043816 (2003); S. Scheel and S.Y. Buhmann, Acta
Physica Slovaca 58, 675 (2008).
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Consistency checks

• ETCR between electric field and magnetic induction
√

[
Ê(r), B̂(r′)

]
= −

i~
ε0

∇× δ(r − r′)U

• consistent with fluctuation-dissipation theorem
√

〈0|Ê(r, ω)Ê†(r′, ω′)|0〉 =
~ω2

πε0c2
ImG(r, r′, ω)δ(ω − ω′)

• Maxwell’s equations follow from bilinear Hamiltonian
√

Ĥ =

∫
d3r

∞∫
0

dω ~ω f̂†(r, ω) · f̂(r, ω)
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General linear dielectrics

Most general linear constitutive relation:

ĵin(r, t) =

∫ ∞
−∞

dτ

∫
d3r ′Q(r, r′, τ) · Ê(r′, t − τ) + ĵN(r, t)

with causal conductivity tensorQ(r, r′, τ) = 0 for cτ < |r − r′|

generalised inhomogeneous Helmholtz equation:[
∇×∇×−

ω2

c2

]
G(r, r′, ω)− iµ0ω

∫
d3s Q(r, s, ω) · G(s, r′, ω) = δ(r − r′)

linear Hamiltonian with bosonic amplitude operators: Ĥ =

∫
d3r

∫ ∞
0

dω ~ω f̂†(r, ω) · f̂(r, ω)

from decomposition of current ĵN(r, ω) =

√
~ω
π

∫
d3r ′ R(r, r′, ω) · f̂(r′, ω) with R a square

root of the positive definite tensor fieldReQ

C. Raabe, S. Scheel, and D.-G. Welsch, Phys. Rev. A 75, 053813 (2007); S.Y. Buhmann, D.T. Butcher, and S. Scheel, New J. Phys. 14, 083034 (2012).
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Properties of the Green tensor

• Schwarz reflection principle G∗(r, r′, ω) = G(r, r′,−ω∗)
• do not require reciprocity, GT(r′, r, ω) 6= G(r, r′, ω)

• integral relation for Green tensor:

µ0ω

∫
d3s

∫
d3s′ G(r, s, ω) · ReQ(s, s′, ω) · G†(r′, s′, ω) = ImG(r, r′, ω)

with generalised real and imaginary parts of a tensor field:

ReT (r, r′) = 1

2

[
T (r, r′) + T †(r′, r)

]
,

ImT (r, r′) = 1

2i

[
T (r, r′)− T †(r′, r)

]
• field fluctuations (generalised linear fluctuation-dissipation relation):〈{

∆Ê(r, ω),∆Ê†(r′, ω′)
}〉

=
~
π
Im
[
µ0ω

2
G(r, r′, ω)

]
δ(ω − ω′)
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General linear media and duality

Maxwell’s equations in dual-pair notation:

∇ ·
(
Z0D̂

B̂

)
=

(
0

0

)
, ∇×

(
Ê

Z0Ĥ

)
− iω

(
0 1

−1 0

)(
Z0D̂

B̂

)
=

(
0

0

)
constitutive relations:(

Z0D̂

B̂

)
=

1

c

(
ε ξ
ζ µ

)
?

(
Ê

Z0Ĥ

)
+

(
I ξ
0 µ

)
?

(
Z0P̂N

µ0M̂N

)

Maxwell’s equations invariant under duality transformation(
x

y

)~

= D(Θ)

(
x

y

)
, D(Θ) =

(
cosΘ sinΘ
− sinΘ cosΘ

)
reciprocal media: discrete symmetry with Θ = nπ/2
nonreciprocal media: continuous symmetry!

S.Y. Buhmann and S. Scheel, Phys. Rev. Lett. 102, 140404 (2010); S.Y. Buhmann, D.T. Butcher, and S. Scheel, New J. Phys. 14, 083034 (2012).
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Classification of media

• Isotropic media (ε=εI , µ=µI , ξ=ζ=0): Onsager reciprocity holds; generalised real and
imaginary parts reduce to ordinary ones; discrete duality symmetry.

• Biisotropic media (ε=εI , µ=µI , ξ=ξI , ζ=ζI ): generalised real and imaginary parts
reduce to ordinary ones; continuous duality symmetry.

• Anisotropic media (ξ= ζ=0): discrete duality symmetry.

important examples:

• Non-reciprocal media: χ=(ζ+ξT)/2 6= 0

• Chiral media: κ=(ζ−ξT)/(2i) 6= 0
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Example: LDOS near a spatially dispersive nanosphere

dyadic Green function from Huygens’ principle and extinction theorem with Maxwell boundary conditions

∂V

Einc(r, ω)

V0

Escat(r, ω)

.V1

.E(1)(r, ω)

.ε(1)(k, ω)

radial LDOS near Na nanosphere with 2nm radius from local and nonlocal Mie theories

R. Schmidt and S. Scheel, Phys. Rev. A 93, 033804 (2016).
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Macroscopic QED and Rytov theory

Dispersion forced from macroscopic QED

Nonequilibrium dispersion forces and heat transfer

Summary
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Examples of dispersion forces
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Dispersion forces as average quantum Lorentz forces

average of quantum Lorentz force

F̂ =

∫
V

d3r
[
%̂(r)Ê(r) + ĵ(r)× B̂(r)

]
seems to vanish in the ground state because 〈0|Ê(r)|0〉 = 〈0|B̂(r)|0〉 = 0 as well as
〈0|%̂(r)|0〉 = 〈0|̂j(r)|0〉 = 0

But: it acquires nonzero average even in the absence of external electromagnetic fields due to
correlated zero-point fluctuations 〈0|Ê2(r)|0〉 6= 0

⇒ relate charge and current densities to electromagnetic fields and use field correlation functions to
obtain nonzero average force:

〈Ê(r, ω)Ê†(r′, ω′)〉 ∝ ω2ImG(r, r′, ω)δ(ω − ω′)[n̄th(ω) + 1]
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Universal scaling laws for dispersion interactions

• Casimir stress: T̂ (r, r) = lim
r
′→r

[
Θ(r, r′)−

1

2
TrΘ(r, r′)

]

Θ(r, r′) =
~
π

∞∫
0

dω

[
ω2

c2
ImG(r, r′, ω)−∇× ImG(r, r′, ω)×∇

]

• Casimir–Polder potential: U(rA) =
~µ0
2π

∞∫
0

dξ ξ
2
αA(iξ)TrG (S)(rA, rA, iξ)

• van der Waals potential:

U(rA, rB ) = −
~µ2

0

2π

∞∫
0

dξ ξ
4
αA(iξ)αB (iξ)Tr

[
G

(S)(rA, rB , iξ) · G (S)(rB , rA, iξ)
]
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Universal scaling laws for dispersion interactions

(i) (ii)

ε(r, ω)

ε(r, ω)
µ(r, ω)

µ(r, ω)

ε(r, ω)

ε(r, ω)

µ(r, ω)

µ(r, ω)A
A

BB

xx y y

zz

• scaled arrangement with ε̄(r, ω) = ε(r/a, ω) and µ̄(r, ω) = µ(r/a, ω)

• atomic positions r̄A = arA and r̄B = arB
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Long-distance (retarded) limit

approximate response functions by static values
α(ω) ' α, ε(r, ω) ' ε(r)

Green tensor of the scaled arrangement obeys[
∇×∇× −

ω2

c2
ε(r)

]
G(r, r′, ω) = δ(r − r

′)

renaming r 7→ ar, ω 7→ ω/a:[
∇×∇×−

ω2

c2
ε(r)

]
aG(ar, ar′, ω/a) = δ(r − r

′)⇒ G(ar, ar′, ω/a) =
1

a
G(r, r′, ω)

• T (ar) = (1/a4)T (r)

• U(arA) = (1/a4)U(rA)

• U(arA, arB) = (1/a7)U(rA, rB)
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Short-distance (nonretarded) limit

distance shorter than all characteristic wavelengths

Born series for dyadic Green function for electric bodies:

G(r, r′, ω) = G
(0)(r, r′, ω) +

ω2

c2

∫
d
3
s χ(s, ω)G (0)(r, s, ω) · G(s, r′, ω)

in short-distance limit: G (0)(r, r′, ω) = −
c
2[I − 3eρ ⊗ eρ]

4πω2ρ3
−

c
2

3ω2
δ(ρ)

⇒ G(ar, ar′, ω) =
1

a3
G(r, r′, ω)

• T (ar) = (1/a3)T (r)

• U(arA) = (1/a3)U(rA)

• U(arA, arB) = (1/a6)U(rA, rB)
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Universal scaling laws from the Helmholtz equation
Distance→ Retarded Nonretarded

Object combination→ e ↔ e e ↔ m e ↔ e e ↔ m
Dual object combination→ m ↔ m m ↔ e m ↔ m m ↔ e

(a) −
1

r8
+

1

r8
−

1

r7
+

1

r5

(b) −
1

r8
A

+
1

r8
A

−
1

r7
A

+
1

r5
A

(c) −
1

ρ8
A

+
1

ρ8
A

−
1

ρ7
A

+
1

ρ5
A

(d) −
1

z6
A

+
1

z6
A

−
1

z5
A

+
1

z3
A

(e) −
1

z5
A

+
1

z5
A

−
1

z4
A

+
1

z2
A

(f) −
1

z4
+

1

z4
−

1

z3
+
1

z

S. Scheel and S.Y. Buhmann, Acta Physica Slovaca 58, 675 (2008).
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Dispersion forced from macroscopic QED

Nonequilibrium dispersion forces and heat transfer

Summary
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Nonequilibrium dispersion forces

Casimir–Polder force in thermal nonequlibrium from dynamical theory

Casimir–Polder force in perturbative limit [ξN = 2πkBTN/~: Matsubara freq.]

Fn(rA) = −µ0kBT
∞∑
N=0

(
1− 1

2
δN0
)
ξ2Nαn(iξN)∇ATrG(rA, rA, iξN) +

µ0
3

∑
k

ω2
nk
{Θ(ωnk ) [n̄th(ωnk ) + 1]− Θ(ωkn)n̄th(ωkn)} |dnk |

2∇ATrReG(rA, rA, ωnk )

• first term: nonresonant (Lifshitz-like) force component, all (Matsubara) frequencies involved

• second term: resonant force components at atomic transition frequencies
• further division into evanescent and propagating parts
• due to absorption and emission of thermal photons
• for ground-state atoms: resonant force components visible on time scales smaller than

inverse ground-state heating rate Γ−1
0k

S.Y. Buhmann and S. Scheel, Phys. Rev. Lett. 100, 253201 (2008).
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Dispersion forces in thermal nonequilibrium

ground-state LiH near a gold surface at room temperature:

S.Å. Ellingsen, S.Y. Buhmann, and S. Scheel, Phys. Rev. A 79, 052903 (2009).
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Temperature invariance despite large photon numbers

total potential becomes temperature-independent

in the spectroscopic high-temperature limit T � Tω = ~|ωkn|/kB (temperature of radiation whose
wavelength is of order zA): lowest term in Matsubara sum dominates

and the geometric low-temperature limit T � Tz = ~c/(zAkB) (temperature necessary to
noticably populate the upper level): exponential≈ 1, sum can be performed

S.Å. Ellingsen, S.Y. Buhmann, and S. Scheel, Phys. Rev. Lett. 104, 223003 (2010).
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o
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i
a
l
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(i) (ii)
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o
t
e
n
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i
a
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S.Å. Ellingsen, S.Y. Buhmann, and S. Scheel, Phys. Rev. Lett. 104, 223003 (2010).
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Casimir–Polder interaction with large molecules

L1 L2

Source

S(y) S(x1) S(x2)

DetectionDiffraction

x‘

y‘

z‘

CCD

β

d
s

b

c) d)

N

NH

N

N

N

HN

N

N

b)

a)

C. Brand, J. Fiedler, T. Juffmann, M. Sclafani, C. Knobloch, S. Scheel, Y. Lilach, O. Cheshnovsky, and M. Arndt, Annals of Physics 527, 580 (2015); J. Fiedler and
S. Scheel, Annals of Physics 527, 570 (2015).
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Spectral energy density of the electromagnetic field

spectral energy density from fluctuation-dissipation theorem (Rytov):

u(r, ω) =
ε0

2
〈Ê†(r, ω) · Ê(r, ω)〉T =

~ω2

2πc2
n̄th(ω)Tr ImG(r, r, ω)

integrated density (G = G (0) + G (S)):

∞∫
0

dω u(r, ω) =
~

4π2c3

∞∫
0

dω ω3n̄th(ω)

︸ ︷︷ ︸
= 1

c σT
4

+
~

2πc2

∞∫
0

dω ω2n̄th(ω)Tr ImG
(S)(r, r, ω)

︸ ︷︷ ︸
' ~

16π2z3

∫
dω n̄th(ω) Im rp(ω)

near-field LDOS dominates free-space LDOS, scaling laws equivalent to dispersion forces
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Heat transfer between dielectric objects
heat flux between bodies at different local temperatures (justification from microscopic theories)

d

z

T
1

T
2

heat flux Φ = 〈S1→2
z 〉T − 〈S2→1

z 〉T

average Poynting vector 〈Ŝ(r)〉T = 〈Ê(r)× Ĥ(r)〉T

fluctuations of individual bodies

〈Ê(r, ω)⊗ Ê(r′, ω)〉T =

∞∫
0

dω n̄th(ω)
~ω4

πε0c4

∫
V

d3s εI (s, ω)G(r, s, ω) · G∗(s, r′, ω)

⇒ heat flux from local integrals of LDOS (i.e. dyadic Green function)
A.I. Volokitin and B.N.J. Persson, Rev. Mod. Phys. 79, 1291 (2007).
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Summary

• macroscopic quantum electrodynamics from microscopic Hopfield models equivalent to statistical
theories (Rytov theory) in thermal equilibrium

• Green function formalism provides unified approach to dispersion forces and heat transfer

• dispersion forces in thermal nonequilibrium require dynamical theory provides by macroscopic
QED

• near-field heat transfer follows the same scaling laws as dispersion forces (both related to LDOS)

• extensions to nonequilibrium (stationary) fluctuation-dissipation theorems possible (e.g. for
quantum friction)

• theory only applicable for macroscopic bodies (definition of permittivities possible, tricky for
particles smaller than 1nm)
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