Thermal Energy Transport in a Surface Phonon-Polariton Crystal

Jose Ordonez-Miranda, Karl Joulain, Younes Ezzahri, Jeremie Drevillon, and Sebastian Volz

> Thermal Nanoscience Teams: Institut Pprime + Laboratoire EM2C

Heat Transfer and Heat Conduction on the Nanoscale

Bad Honnef, April 14, 2016

Surface Phonon-Polaritons (SPhPs)

Surface electromagnetic waves due to the phonon-photon coupling.

SPhP Energy Transport

Goal of our Work

SPhP energy transport along a 3D ensemble of spheroidal nanoparticles

SPhP crystal

- Ultralow phonon energy transport.
- High surface area-to-volume ratio.

SPhPs: Longitudinal Polarization

Modeling of the Thermal Conductance (G)

Dispersion Relation

$$\vec{E}(\vec{r},t) = \frac{1}{4\pi\varepsilon_2} \left(\frac{\vec{A}}{r^3} - \frac{ik\vec{A}}{r^2} + \frac{k^2\vec{B}}{r} \right) e^{i(kr-\omega t)}$$

$$\vec{E}_n = \sum_{m \neq n} \vec{E}_m (|m - n|d, t)$$

$$\vec{p}_n = \vec{p}_0 e^{i(\beta n d - \omega t)} \qquad \vec{p}_n = \alpha \vec{E}_n$$

$$-i + \alpha_e^{-1} = \frac{3}{x^3} \Big[f_3(\beta, k_2) - ik_2 f_2(\beta, k_2) \Big] \qquad k_2 = \frac{\omega}{c} \sqrt{\varepsilon_2}$$

$$\downarrow Dispersion relation: \beta = \beta_R + i\beta_I = ?$$

$$\alpha_e = \frac{2}{9k_2^3 a^2 b} \left[\frac{\varepsilon_1 - \varepsilon_2}{\varepsilon_2 + L(\varepsilon_1 - \varepsilon_2)} \right]$$

$$\beta_{I} = \operatorname{Im}(\alpha_{e}^{-1}) \frac{\partial \beta_{R}}{\partial \operatorname{Re}(\alpha_{e}^{-1})}$$

Polarizability

Permittivity of SiC

Propagation Parameters 2

Thermal Conductance (G)

Thermal Conductance 2

Dipole Interaction (DI)

J. Ordonez-Miranda et al, PRB 93, 035428 (2016); PRL 112, 055901 (2014)

Merci!

Contact Email: jose.ordonez@cnrs.pprime.fr

Papers and preprints

www.researchgate.net/profile/Jose_Ordonez-Miranda