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Non-equilibrium ... Light

Messenger of Stars (Venice 1610)
Hubble ultra deep field (NASA 2004)



Fundamental Interactions

focus on condensed matter 

electric forces 

spin exchange "potential" 

electromagnetic ("collective") forces 

chemical bonds



Electrodynamics

matter = sources 

matter = medium response

• mesoscopic sources 
• average response + fluctuations ("Rytov split")



Fluctuation Electrodynamics
[Rytov & al >1950s]

source: thermalised matter

fluctuation–dissipation relation 
[Callen & Welton, Phys Rev 1951]

[Rytov & al >1950s]

+ magn.

Johnson & Nyquist

random source 
(Langevin force)



whose Temperature?

em field does not equilibrate 

matter thermalises (local eq = LTE) 

conservation laws and entropy production



non-Equilibrium ... non-LTE?

fast physics  
excitation with short laser pulse 
– (few fs) plasmon dephases 
– hot electrons  
– (10 ps) equilibrate with lattice phonons 

concept: weak (thermal) contact 

slow physics  (= this workshop)  
local thermal equilibrium (LTE)  
(steady) heat flux 
heat diffusion

toy model [... Barton JPCM 2015]



nano-Scale

"local temperature", coarse grain 

mesoscopic electrodynamics ("Rytov split")

averaged field ("local"?)"collective"

local Ohm: dx ≫ mfp (few nm)

non-local: "anomalous skin effect"
[Lindhard] [Singwi & Sjölander 1968]

thermal fluctuations



nano-Scale

spirit of 2nd FDT: local sources 

Rytov-Maxwell → thermal radiation (Poynting v. etc) 

how to work with this (numerical schemes)

fluctuation–dissipation relation 
[Callen & Welton, Phys Rev 1951]

local approx



painless Green

solve radiation by point source (Green tensor) 

homogeneous medium



Mode Densities "LDOS"

blackbody radiation [Planck 1900]  

FD relation "1st kind"  
[Callen & Welton 1951] [Eckhardt Opt Commun 1984] 

local mode density LDOS = Im G, r-dependent 

global vs local temperature(s)

occupation 
/ mode

mode 
density



"thermal Photons" in Metal
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"thermal Photons" near SiC
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Fourier component E!r, v" of the electric field E!r, t"
at a point r ! !x, y, z" in the empty half space z . 0 is
generated by thermal currents with density j!r0, v", which
is nonzero only for z0 , 0. It can be computed following
the procedure outlined in Refs. [12,14],

Ea!r, v" ! im0v
X

b!x,y,z

Z

V
d3r 0 Gab!r, r0, v"jb!r0, v" ,

(2)

where V is the volume of the hot body which occupies
the half-space z0 , 0, and Gab!r, r0, v" is the electromag-
netic Green tensor for the system of two homogeneous ma-
terials separated by a planar interface z ! 0. According to
the fluctuation-dissipation theorem [14], the fluctuations of
thermal currents are described by the correlation function

#ja!r, v"jb!r0, v0"$ !
vu!v, T "

p
´0´00!v"dabd!r 2 r0"

3 d!v 2 v0" , (3)

where the angle brackets denote the statistical ensemble
average. The Kronecker symbol dab and the spatial d
function in this formula follow from the assumption that
the dielectric function is isotropic, homogeneous, and
local [14].

The energy density I!r, v" of the emitted electric field
at the point r is defined by the formula

X

a!x,y,z

´0

2
#E!

a!r, v"Ea!r, v0"$ % I!r, v"d!v 2 v0" .

(4)

Using Eqs. (2) and (3) into (4), we obtain, for I!r, v",

I!r, v" ! 8p3 v3

c4 u!v, T "´00!v"
X

a,b!x,y,z

Z 0

2`
dz0

3
Z d2kk

!2p"2 jgab!kk, v j z, z0"j2, (5)

where gab!kk, v j z, z0" is the analytically known [12] 2D
spatial Fourier transform (in x and y) of the Green’s tensor
Gab!r, r0, v". Note that I!r, v" in Eq. (5) is independent
of x and y, due to the translational invariance of the system
in x and y directions.

We now assume that the interface z ! 0 between the
material and a vacuum can support electromagnetic SW.
The dispersion relation between the wave number kk !
jkkj and frequency v of SW is

&kSW
k !v"'2 ! !v2(c2"´!v"(&´!v" 1 1' . (6)

Such waves exist for materials having ´0!v" , 21 in one
or several frequency ranges [10]. We consider SiC, which
supports SW known as surface phonon polaritons and
which has been used in previous experimental [11] and
theoretical [12] investigations of thermal emission. The di-
electric function of this material is given by the expression
´!v" ! ´`!v2

L 2 v2 2 igv"(!v2
T 2 v2 2 igv" with

´` ! 6.7, vL ! 182.7 3 1012 s21, vT ! 149.5 3
1012 s21, and g ! 0.9 3 1012 s21 [11]. By substituting
´!v" into Eq. (5) and performing a straightforward evalua-
tion of integrals (only the integral over the magnitude of
kk has to be calculated numerically, the other two integrals
can be evaluated analytically), we obtain the spectra of
thermal emission for SiC at different heights z above the
surface. We plot the results in Fig. 1 in the frequency
range 0 , v , 400 3 1012 s21 for T ! 300 K at three
different heights.

Although one could expect to find differences of the SiC
spectra with the blackbody spectrum (1), it is striking that
near-field and far-field spectra of the same SiC sample are
so dramatically different, as seen in Fig. 1. An observer
doing a traditional far-zone spectroscopic measurement
(Fig. 1a) would detect the spectrum with a rather wide
dip in the range 150 3 1012 s21 , v , 180 3 1012 s21

due to the low emissivity of SiC in that range [11]. Note
that the sample effectively acts as a nonradiating source
in this frequency range. However, when the probe moves
within a subwavelength distance from the material (typi-
cal thermal emission wavelengths at T ! 300 K are of the
order of 10 mm), the spectrum starts to change rapidly. In
Fig. 1b, showing the emission spectrum at 2 mm above
the surface, this change is seen as a peak emerging at
v ! 178.7 3 1012 s21. At very close distances (Fig. 1c),
the peak becomes so strong that an observer would sur-
prisingly see almost monochromatic emission with photon
energies not represented in the far zone.
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FIG. 1. Spectra of thermal emission of a semi-infinite sample
of SiC at T ! 300 K and three different heights above the sur-
face: (a) za ! 1000 mm, (b) zb ! 2 mm, (c) zc ! 0.1 mm.
The insets magnify the spectra plotted on a semilog scale in
the range of strong contribution from evanescent surface modes.
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near field spectrum 
• surface plasmon 
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Photons v Phonons

T = 300K: wavelengths 2-10µm ≫ ~ 1nm 

elastic field theory, heat capacity, local temperature, 
defects, kinetic theory (Boltzmann) 

ballistic v diffusive: conduction 

"heat transfer across vacuum" = "ballistic wire"

T      T T   + !   TT

12 d

photon tunnelling phonon shooting



Boundaries

connection rules:  
Maxwell fields, surface charges/currents 

matter currents (add'l boundary cond’s “ABC”) 

genuine surface response 
example: plasmon dispersion

1   2

fluctuates, too

double layer

0.2 0.4 0.6 0.8 1 1.2
K c / Ωp

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
ω / Ωp

[Flores & al SSC 1972] 
[Feibelman PRB 1989] 
[Horovitz & H EPL 2012]



Regimes of Heat Transfer

T1 T2
Stefan-Boltzmann

polariton tunnelling & induction heating

phonon conduction 
Kapitza resistance

"phonon tunnelling"

expts: 
A. Kittel, T. Kralik, Pramod S. Reddy, Y. de Wilde ... 
theory: 
A. Rodriguez, K. Sasihithlu, S. Volz ...



Challenges
heat transfer across 1–10nm gap (“xnf”) 

expt P Reddy group & comp MT Homer Reid 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which is ∼400 K (heating by the incident laser results in an elevated 
temperature).

The tight temporal correlation between the mechanical snap-in and 
the temperature jump of the probe makes it possible to identify tip– 
substrate contact solely on the basis of temperature signals. In Fig. 2b, 
the recorded tip temperature is shown as a probe approaches a heated 
substrate with the laser beam turned off. The recorded temperature 
signals with and without laser tracking are basically identical (Fig. 2a, b),  
except that the magnitude of the jump reflects the tip–substrate tem-
perature difference with and without laser excitation. Thus, mechanical 
contact can be readily detected from the robust temperature jump with-
out laser excitation, thereby avoiding probe heating and laser interfer-
ence effects. Therefore, we performed all experiments by first estimating 
the snap-in distance using the optical scheme and subsequently turning 
the laser off to perform eNFRHT measurements (see Supplementary 
Information for the measurement of gap size and snap-in distance).

To determine the gap (d)-dependent near-field radiative conduct-
ance (GeNFRHT), we measured ∆TP and directly estimated GeNFRHT 
from GeNFRHT(d) = ∆TP/[RP(TS − TR − ∆TP)], where RP is the ther-
mal resistance of the probe, which was experimentally determined 
as described in Supplementary Information (Supplementary Fig. 7) 
to be 1.6 × 106 K W−1 and 1.3 × 106 K W−1 for the SiO2- and SiN-
coated probes, respectively. The measured conductance of the gaps 
for SiO2 and SiN surfaces is shown in Fig. 3a and b, respectively. It can 
be seen that GeNFRHT increases monotonically until the probe snaps 
into contact (gap size at snap-in is ∼2 nm for both SiO2 and SiN 
measurements; see Supplementary Information and Supplementary 
Fig. 6). Furthermore, it can be seen that the eNFRHT is larger for 
experiments performed with SiO2. These measurements represent 

the first observation of eNFRHT in single-digit nanometre-sized 
gaps between dielectric surfaces. We compared these results to our 
computational predictions based on fluctuational electrodynamics, 
assuming local-dielectric properties (see details later), and found very 
good agreement (blue lines in Fig. 3a, b).

The remarkable agreement between eNFRHT measurements and 
computational predictions raises important questions with regards 
to recent experiments7 investigating eNFRHT between Au surfaces, 
which suggested strong disagreements (∼500-fold) between predic-
tions of fluctuational electrodynamics and the results of experiments. 
One may wonder if the good agreement reported above is unique to 
eNFRHT between polar dielectric materials. To answer this question 
unambiguously, we performed additional eNFRHT measurements 
with Au-coated probes and substrates. The measured conductance in 
these experiments is shown in Fig. 3c. It can be seen that the measured 
GeNFRHT with decreasing gap size remains comparable to the noise 
floor of ∼220 pW K−1 for Au-coated probes at an applied temperature 
differential of ∼115 K (see Supplementary Information) and is much 
smaller than that observed for polar dielectrics. These measurements 
set an upper bound of ∼250 pW K−1 for GeNFRHT in our Au–Au exper-
iments. This result is particularly surprising because previous studies 
that used probes with smaller diameters and lower thermal resist-
ances7,23 ((23–54) × 103 K W−1 and ∼106 K W−1, implying a lower sen-
sitivity than our probes) reported conductances > 40 nW K−1, which 
are at least two orders of magnitude larger than conductances meas-
ured by us and predicted by theory.

To resolve this contradiction we needed to improve the resolu-
tion of our conductance measurements by more than an order of 
magnitude (see Supplementary Information and Supplementary  
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Figure 1 | Experimental set-up and SEM images of SThM probes and 
suspended microdevices. a, Schematic of the experimental set-up, 
in which an SThM probe is in close proximity to a heated substrate 
(insets show cross-sections of the SThM probe). The scenario for SiO2 
measurements is shown (the coating on the substrate is replaced with SiN 
and Au in other experiments). b, SEM image (top) of a SThM probe. The 
inset shows an SEM image of the hemispherical probe tip, which features 
an embedded Au–Cr thermocouple from which the thermoelectric 
voltage VTC is measured. The bottom panel illustrates a schematic cross-
section for a SiO2-coated probe used in SiO2 measurements. For SiN and 

Au measurements, the outer SiO2 coating is appropriately substituted 
as explained in Supplementary Information. A resistance network that 
describes the thermal resistance of the probe (RP) and the vacuum gap 
(Rg = (GeNFRHT)−1), as well as the temperatures of the substrate (TS), 
tip (TP) and reservoir (TR) is also shown. c, Schematic showing the 
measurement scheme used for high-resolution eNFRHT measurements of 
Au–Au. The amplitude of the supplied sinusoidal electric current is If, the 
sinusoidal temperature oscillations at 2f are related to the voltage output 
V3f. d, SEM image of the suspended microdevice featuring the central 
region coated with Au and a serpentine Pt heater–thermometer.
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Figure 4 | Spectral conductance and spatial distribution of the 
Poynting flux. a, Spectral conductance as a function of energy for a SiO2 
tip–substrate geometry for three different gap sizes. The tip diameter is 
450 nm, and the reservoir temperatures are 310 K for the tip and 425 K for 
the substrate. Notice the logarithmic scale in the vertical axis. b, Same as  
a, but for Au. In this case, the tip radius is 450 nm, and the tip and substrate  
temperatures are 300 K and 301 K, respectively. c, Surface-contour plot 
showing the spatial distribution of the Poynting-flux pattern on the 

surface of the bodies for the SiO2 tip–substrate geometry corresponding to 
that in a with a gap of 1 nm. The colour scale is in units of W (K eV m2)−1 
and the plot was computed at an energy of 61 meV, which corresponds 
to the maximum of the spectral conductance. The right inset shows the 
corresponding surface heat flux on the substrate; the left inset displays the 
whole tip–substrate geometry simulated, including the mesh used in the 
calculations. d, Same as c, but for Au. In this case the surface-contour plot 
was computed at 9 meV, the maximum of the spectral conductance.

Figure 3 | Measured extreme near-field thermal conductances for dielectric 
and metal surfaces. a, Measured near-field radiative conductance between 
a SiO2-coated probe (310 K) and a SiO2 substrate at 425 K. The red solid line 
shows the average conductance from 15 independent measurements, the 
light red band represents the standard deviation. The blue solid line shows 
the average of the computed radiative conductance for 15 different tips with 
stochastically chosen roughness profiles (root-mean-squared roughness of 
∼10 nm) and a tip diameter (450 nm) obtained from SEM images of the probe. 

The blue shaded region represents the standard deviation in the calculated 
data. b, c, Same as a, but for SiN–SiN and Au–Au, respectively. The tip 
diameter is 350 nm for the SiN-coated tip. Computed results are not included 
for Au–Au. d, Near-field conductance from experiments with a Au-coated 
probe and a suspended microdevice. Red dots represent the average from 10 
different measurements (temperature periodically modulated at 18 Hz); the 
error bars represent the standard deviation. The blue solid line represents the 
computed conductance (tip diameter is 900 nm).
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Challenges
heat transfer across 1–10nm gap (“xnf”) 

expt P Reddy group & comp MT Homer Reid 

expt A Kittel group & comp AW Rodriguez  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Figure 3: Theoretical results of the transfered heat
flux. Sketch of the considered geometry (righthand side) and
numerical results using exact numerical calculations for the
spherical tip and the cone-like protruding part. We have dyed
the different parts of the probe (see inset) with the same colors
as used for the lines in plots. The parameters of the tip are
the following: the foremost part is modeled by a sphere of
radius of 30 nm, the protruding conical part has a length of
300 nm with a radius at the base of 87.5 nm.

geometry of our probe [26, 26]. Obviously, the values
for the heat flux are between 0.2 nW(d = 5nm) and
0.25 nW(d = 0.5 nm) which corresponds to heat trans-
fer coefficients h

nf

of about 440-550 W/m2K. Therefore,
the change of the probe-sample heat current as predicted
by fluctuational electrodynamics is only 110 W/m2K,
whereas the measured value is 1.1 ⇥ 106 W/m2K. It
is interesting that the distance dependence of the heat
flux found Fig. 3 is similar to the measured distance de-
pendence, but the heat flux level is obviously four orders
of magnitude too small. Thus, the curvature of the tip
cannot account for the discrepancy between the experi-
mental data and the theory.

It might be argued that nonlocal response of the per-
mittivity should be taken into account [27–29]. Since
nonlocal effects cannot be included easily in the exact
numerical scheme, we have also modeled our sensor us-
ing the so-called proximity approximation (PA), which
can be applied in the near-field regime when the distance
between two objects is much smaller than their curva-
ture [22–24]. Note, that this approximation has succes-
fully been applied in all experiments using a spherical
probe [9, 10, 13, 14]. In our case, however, we obtain
results for the whole probe which show a similar distance
dependence as the exact results in Fig. 3, but which over-
estimate the contribution of the tip and lead to errors
on the order of 400% (see Suppl. Mat.). Similar devia-
tions of PA and exact results were already observed in
a sphere-plate geometry (see Ref. [23]) and here can be
traced back to the fact that the foremost part of the tip is
extremely small compared with �

th

so that it acts more
like a dipole than a macroscopic sphere. Nonetheless,
one can still use the PA to estimate the heat flux in our

setup, keeping in mind that it overestimates the heat flux
level. Now, within this approximation we have included
nonlocal effects using the Lindhard-Mermin model [29]
(see Suppl. Mat.), and we find that while these nonlo-
cal effects increase the heat flux, as expected [28, 29],
they turn out to be relatively weak for the considered
distances. Hence, we find that the conventional macro-
scopic model of heat transfer greatly underestimates the
heat flux found in our experiments. We note and em-
phasize that the above calculations in Fig. 3 make no
approximation and fully account for flux mediated by
surface plasmon polaritons, though these tend to be neg-
ligible for gold at room temperature [29]. In what fol-
lows, we consider a number of currently accepted models
of phonon (conductive) transfer and argue that they too
cannot explain the above mentioned enhancement:

(A) Prunnila and Meltaus [1] have studied the tunnel-
ing of acoustic phonons between piezoelectric materials.
They report an approximate 1/d3 distance dependence.
Making the same estimation for the effective tip area A as
in (i) we find that for piezoelectric materials studied in [1]
a power transfer of about 13 nW could be expected for
r = 30 nm at d = 1 nm (h

nf

= 2.9⇥ 104 W/m2K). This
value is too small to explain our data and the distance
dependence does not agree with the measured one. But
this is not surprising, since in our experiment we are not
using piezoelectric materials but metals, meaning that
this theory cannot be applied directly.

(B) Another approach is given by Sellan et al. [4]
who consider the phonon tunneling between two sili-
con half spaces through a vacuum gap using lattice dy-
namics calculations. The authors report a heat flux by
phonon tunneling (resulting in a heat transfer coefficient
h
nf

of 5.3 ⇥ 108 W/m2 K) which is five orders of mag-
nitude larger than the conventional radiative heat flux
at d = 0.1 nm. Although the reported enhancement is
about two orders of magnitude larger than ours, this ef-
fect is only observable at distances smaller than 0.2nm,
above which the theory is well described by macroscopic
fluctuational electrodynamics. Hence, phonon tunneling
within this model also cannot explain our enhancement
which occurs at distances up to 5 nm. Furthermore,
the calculations were only done for Si using a specific
Stillinger-Weber potential usually used in bulk material.
It should be mentioned that using another atomistic sim-
ulation method, it was shown very recently that for po-
lar materials like SiC phonon tunneling only slightly in-
creases the heat flux with respect to Rytov’s theory in
the distance regime between 0.2 nm and 1 nm [5].

(C) The approach of Mahan [2] based on image po-
tentials considers heat tunneling between a metal and
alkali halides so that it is again not directly applicable to
our experiment. The theory predicts a 1/d dependence
with very large heat fluxes by phonon tunneling even for
several nanometers. At distances of 2–3 nm, the heat
flux drops by a factor of 10 compared to the boundary

finite el’t mesh
AW Rodriguez

factor 1/1000
too low

OK

Kloppstech & al [arXiv:1510.06311]

http://arxiv.org/abs/1510.06311
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Figure 3: Theoretical results of the transfered heat
flux. Sketch of the considered geometry (righthand side) and
numerical results using exact numerical calculations for the
spherical tip and the cone-like protruding part. We have dyed
the different parts of the probe (see inset) with the same colors
as used for the lines in plots. The parameters of the tip are
the following: the foremost part is modeled by a sphere of
radius of 30 nm, the protruding conical part has a length of
300 nm with a radius at the base of 87.5 nm.

geometry of our probe [26, 26]. Obviously, the values
for the heat flux are between 0.2 nW(d = 5nm) and
0.25 nW(d = 0.5 nm) which corresponds to heat trans-
fer coefficients h

nf

of about 440-550 W/m2K. Therefore,
the change of the probe-sample heat current as predicted
by fluctuational electrodynamics is only 110 W/m2K,
whereas the measured value is 1.1 ⇥ 106 W/m2K. It
is interesting that the distance dependence of the heat
flux found Fig. 3 is similar to the measured distance de-
pendence, but the heat flux level is obviously four orders
of magnitude too small. Thus, the curvature of the tip
cannot account for the discrepancy between the experi-
mental data and the theory.

It might be argued that nonlocal response of the per-
mittivity should be taken into account [27–29]. Since
nonlocal effects cannot be included easily in the exact
numerical scheme, we have also modeled our sensor us-
ing the so-called proximity approximation (PA), which
can be applied in the near-field regime when the distance
between two objects is much smaller than their curva-
ture [22–24]. Note, that this approximation has succes-
fully been applied in all experiments using a spherical
probe [9, 10, 13, 14]. In our case, however, we obtain
results for the whole probe which show a similar distance
dependence as the exact results in Fig. 3, but which over-
estimate the contribution of the tip and lead to errors
on the order of 400% (see Suppl. Mat.). Similar devia-
tions of PA and exact results were already observed in
a sphere-plate geometry (see Ref. [23]) and here can be
traced back to the fact that the foremost part of the tip is
extremely small compared with �

th

so that it acts more
like a dipole than a macroscopic sphere. Nonetheless,
one can still use the PA to estimate the heat flux in our

setup, keeping in mind that it overestimates the heat flux
level. Now, within this approximation we have included
nonlocal effects using the Lindhard-Mermin model [29]
(see Suppl. Mat.), and we find that while these nonlo-
cal effects increase the heat flux, as expected [28, 29],
they turn out to be relatively weak for the considered
distances. Hence, we find that the conventional macro-
scopic model of heat transfer greatly underestimates the
heat flux found in our experiments. We note and em-
phasize that the above calculations in Fig. 3 make no
approximation and fully account for flux mediated by
surface plasmon polaritons, though these tend to be neg-
ligible for gold at room temperature [29]. In what fol-
lows, we consider a number of currently accepted models
of phonon (conductive) transfer and argue that they too
cannot explain the above mentioned enhancement:

(A) Prunnila and Meltaus [1] have studied the tunnel-
ing of acoustic phonons between piezoelectric materials.
They report an approximate 1/d3 distance dependence.
Making the same estimation for the effective tip area A as
in (i) we find that for piezoelectric materials studied in [1]
a power transfer of about 13 nW could be expected for
r = 30 nm at d = 1 nm (h

nf

= 2.9⇥ 104 W/m2K). This
value is too small to explain our data and the distance
dependence does not agree with the measured one. But
this is not surprising, since in our experiment we are not
using piezoelectric materials but metals, meaning that
this theory cannot be applied directly.

(B) Another approach is given by Sellan et al. [4]
who consider the phonon tunneling between two sili-
con half spaces through a vacuum gap using lattice dy-
namics calculations. The authors report a heat flux by
phonon tunneling (resulting in a heat transfer coefficient
h
nf

of 5.3 ⇥ 108 W/m2 K) which is five orders of mag-
nitude larger than the conventional radiative heat flux
at d = 0.1 nm. Although the reported enhancement is
about two orders of magnitude larger than ours, this ef-
fect is only observable at distances smaller than 0.2nm,
above which the theory is well described by macroscopic
fluctuational electrodynamics. Hence, phonon tunneling
within this model also cannot explain our enhancement
which occurs at distances up to 5 nm. Furthermore,
the calculations were only done for Si using a specific
Stillinger-Weber potential usually used in bulk material.
It should be mentioned that using another atomistic sim-
ulation method, it was shown very recently that for po-
lar materials like SiC phonon tunneling only slightly in-
creases the heat flux with respect to Rytov’s theory in
the distance regime between 0.2 nm and 1 nm [5].

(C) The approach of Mahan [2] based on image po-
tentials considers heat tunneling between a metal and
alkali halides so that it is again not directly applicable to
our experiment. The theory predicts a 1/d dependence
with very large heat fluxes by phonon tunneling even for
several nanometers. At distances of 2–3 nm, the heat
flux drops by a factor of 10 compared to the boundary

finite el’t mesh
AW Rodriguez

factor 1/1000
too low

2

vacuum with a typical working pressure of 10�10 mbar.
The setup is based on a commercial scanning tunneling
microscope (STM). As depicted in Fig. 1 (a) and (b),
the home-made STM probes consist of a platinum wire,
molten into a glass capillary, pulled sharp with a pipette
puller and are then coated with 100 nm of Au by means
of e-beam evaporation ex situ. At the point where the
Au film separates from the Pt-core, a thermocouple is
formed. This probe design allows for local heat flux mea-
surements in addition to its STM ability [18, 19]. The
heat flux coupled into the tip apex drains towards the
back side of the tip holder causing a temperature differ-
ence between them which, finally, is generating a ther-
movoltage V

th

. A scanning electron microscope (SEM)
image of such a probe is depicted in Fig. 1 (c). The pro-
truding part of the probe is typically about 1 – 2 µm in
length and 300 – 700 nm in diameter (at the base). The
radius r of the tip apex is typically about 30 nm [20],
as shown in the transmission electron microscope (TEM)
micrograph in Fig. 1 (d).

Our probes are able to detect heat fluxes down to 4 nW
and heat conductances down to 24 pW/K at 50 Hz band-
width. As we will see below, this sensitivity of the probe
is not sufficient to measure radiative heat fluxes predicted
by fluctuational electrodynamics. Concerning the heat
fluxes, we achieve a lateral resolution of 6 nm when a
temperature difference �T between probe and sample is
applied [18, 19]. The topographic information can be
measured at the same time using the STM ability of our
probe which features atomic resolution.

The measured change of the probe-sample heat current
�P in the distance regime of 0.2 - 7 nm is approximately
0.5 µW as shown in Fig. 2. This corresponds to a heat
transfer coefficient h

nf

through the vacuum gap by near-
field interactions of

h
nf

=
�P

A�T
= 1.11⇥ 106

W

m2K
(1)

when using �P = 0.5 µW and assuming a disk-shaped
effective heat flux area A of the tip with r = 30 nm
and a temperature difference of �T = 160 K, since
T
probe

= 280 K and T
sample

= 120 K. In contrast, the
heat transfer coefficient between two black bodies at the
same temperatures can be estimated to be

h
BB

= �
BB

T 4

probe

� T 4

sample

�T
= 2.10

W

m2K
(2)

using the Stefan-Boltzmann constant �
BB

= 5.67 ⇥
10�8W/m2K4. Hence, the measured heat transfer coeffi-
cient of the vacuum gap is about 5⇥105 times larger than
the black-body value. Thus, our NSThM technique yields
by far the largest heat flux level compared to other near-
field experiments [8–14]. So far, these have measured
heat fluxes up to approximately 100 times the black-
body value [12], albeit at much larger distances. As we
show below, this value is four orders of magnitude larger

Figure 2: Gap-dependent heat flux and tunneling cur-
rent. Measured average heat flux power P (upper curves with
respect to the axis on the left-hand side) and tunneling current
IT (lower curves with respect to the axis on the right-hand
side) as a function of distance d for approaching (circles) and
retracting (crosses) direction together. The sample given by a
200 nm gold-film on a mica substrate is cooled down to 120 K,
whereas the temperature of the probe is held at ambient tem-
perature so that �T = 160K. The shaded areas quantify the
uncertainties: In case of the tunneling current the uncertainty
is given by its standard deviation, whereas the relative error
of the heat flux measurement is calculated via Gaussian error
calculus for each distance step. The certainty of the value for
the distance d = 0 nm is limited by the certainty of the value
for the work function for gold [21]. From which we estimate
a relative error in d = 0 nm of �d = 90 pm. Inset: Sketch of
the probe and the sample.

than that obtained using conventional macroscopic fluc-
tuational electrodynamics. However, theoretical models
based on phonon tunneling can predict such large values.
Furthermore, we find at close distances up to d = 2 nm an
almost linear decay of the heat flux, which means that we
can exclude algebraic decays of the form d�n with n � 1,
but we cannot exclude exponential decays.

We want to emphasize that the measured heat trans-
fer cannot be caused by Joule heating from tunneling
electrons. The maximum power of Joule heating by the
tunneling electrons can be estimated to be P

e

� = V I
T

=
30nW (V = 600mV and I

T

= 50nA) which is about six
percent of the maximum heat flux. Furthermore, Fig. 2
shows the typically observed exponential decay of the
tunneling current I

T

at distances below d = 1nm. At
larger distances no current is detectable anymore (below
0.5 pA). Thus, the massive heat flux and its distance
dependence cannot be explained by the exchange of elec-
trons.

Now, we want to compare commonly discussed theo-
retical models with our experimental data. Let us first
stick to the conventional macroscopic theory: In Fig. 3
we show exact numerical for the radiative heat flux us-
ing a boundary element method in order to model the
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Idea: proximity force (Deryagin) approximation



Teasers

radiation near metals is mainly magnetic (LMDOS)  
[J. D. Jackson] [K. Joulain, PRB 2003] 

electrodynamics & relativity:  
medium edyn & general relativity 
[U. Leonhardt & Th. Philbin, Progr Opt 2009] 

relative motion is a non-eq setting (4-vector field) 
similar to temperature gradients  
[G. Neugebauer] [Zh. Ch. Wu, EPL 2009] 

quantum aspects / multiple-scale simulations

friction (Cherenkov) forces: 
I. Nefedov, A. Volokitin ...



Summary



Summary

fluctuation EDyn (Rytov theory) = Maxwell + Langevin 

matter thermalises to T(r), 
equilibrates the e.m. field via absorption / fluctuation  
(FD relations 1+2) 

super-Planck heat transfer:  
"activate" matter degrees of freedom (SPP, phonons) 

n-scale: non-sharp boundaries, non-local response


