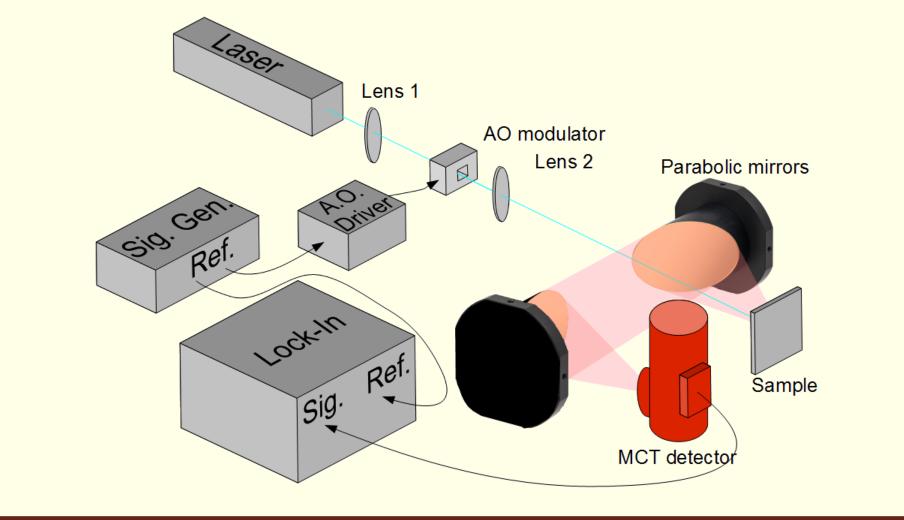
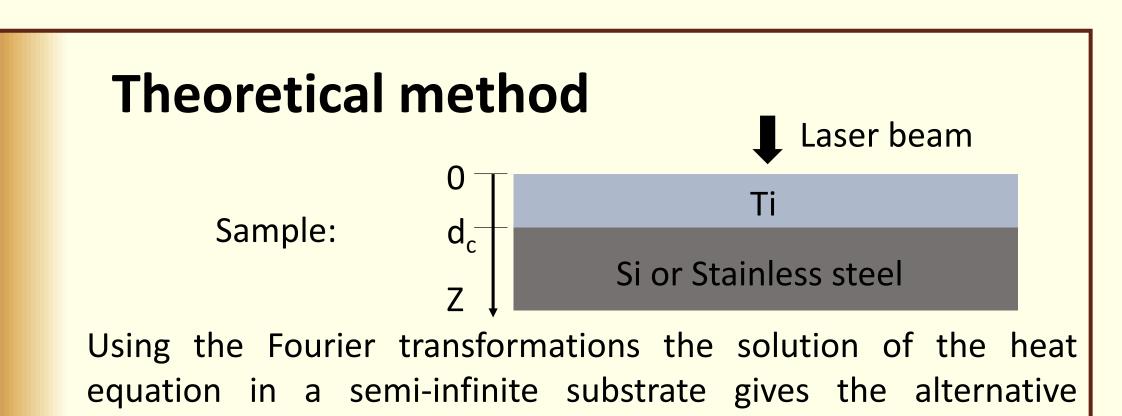
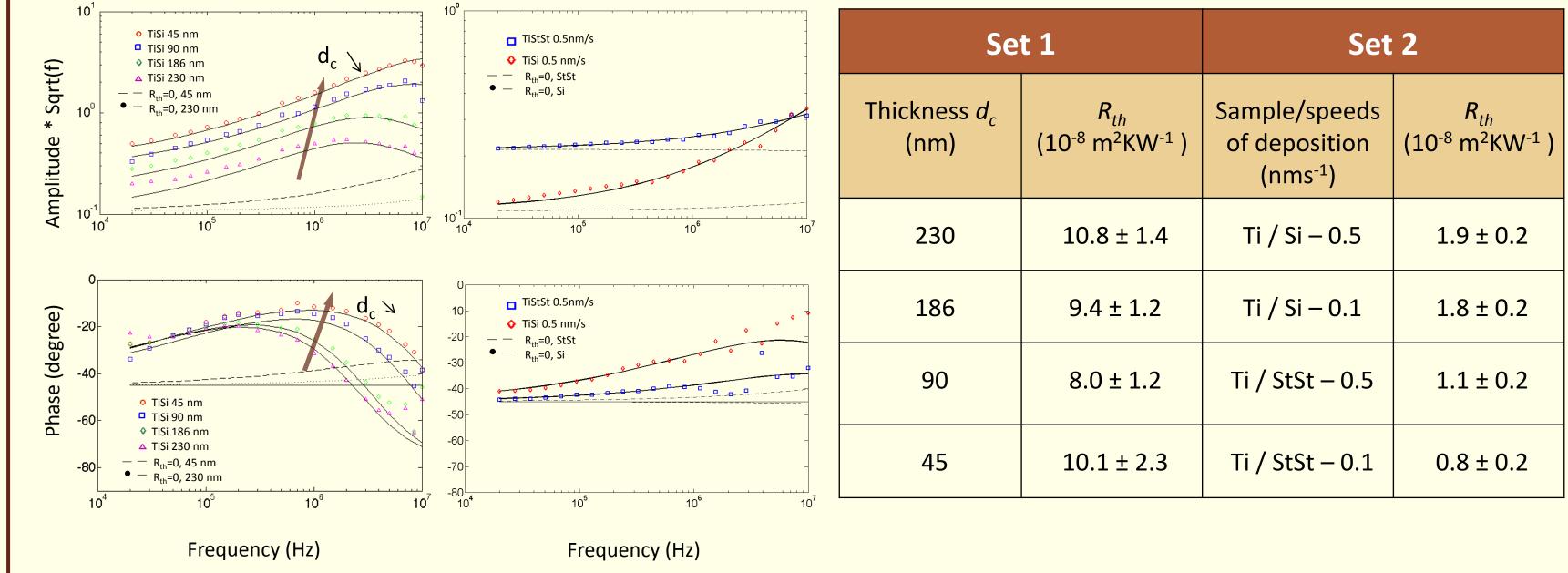
Measurement of thermal boundary resistance by photothermal radiometry

Georges Hamaoui¹, Nicolas Horny¹, Mihai Chirtoc¹, Austin Fleming^{1,2}, Heng Ban²


¹GRESPI, Multiscale Thermophysics Lab., Université de Reims Champagne-Ardenne URCA, Moulin de la Housse BP 1039, Reims 51687, France ² MAE, Mechanical & Aerospace Engineering, Utah State University, 4130 Old Main Hill, Logan, UT 84322-4130, United States <u>georges.hamaoui@univ-reims.fr</u>


Abstract


Despite recent progress in the comprehension and modeling of heat transfer across interfaces, experimental values of interfacial thermal resistance R_{th} in various systems present large deviations from theoretical predictions. Moreover, a large variability of R_{th} with the condition of the interface at micro- and nano-scale is observed. However, such data are necessary for the validation of theoretical models and computations. Measuring R_{th} between a film and the substrate is often a challenge for the experimentalist because the available methods have to be adapted to the features of the samples. This work presents the experimental approach we are using including high frequency photothermal radiometry (HF-PTR), the theory of the simulation model and the sensitivity analysis. The current PTR system has been extended for measurements up to 10 MHz. For simple configurations, R_{th} is obtained directly from the experiment and then it can be compared to theoretical predictions. A study of uncertainties led us to minimize ΔR_{th} and to find the optimum film thickness.

Experimental method	Experimental results	R _{th} results
	Set 1 Set 2	

- \blacktriangleright 0.1Hz to 100 Hz for polymer composites: $d \approx 500 \ \mu m^1$
- \succ 1 kHz to 10 MHz for thin films characterization^{2,3}
- Photoconductive MCT detector KMPV-11-1
- Heterodyne lock-in amplifier SR844 200 MHz
- \blacktriangleright Increase of sample temperature < few °C (P_{LASER} = 80 mW)
- > Surface of measurement $\approx 1 \text{ mm}^2$

Sensitivity and uncertainty studies

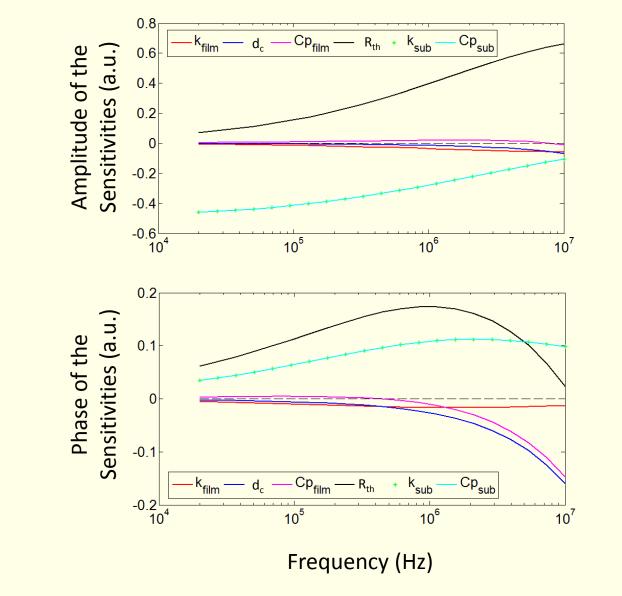
The calculation of the sensitivity is made by using the equations (2) where p represents the parameter and $T_{AC}(p + \Delta p)$ is the temperature using the new measurand.

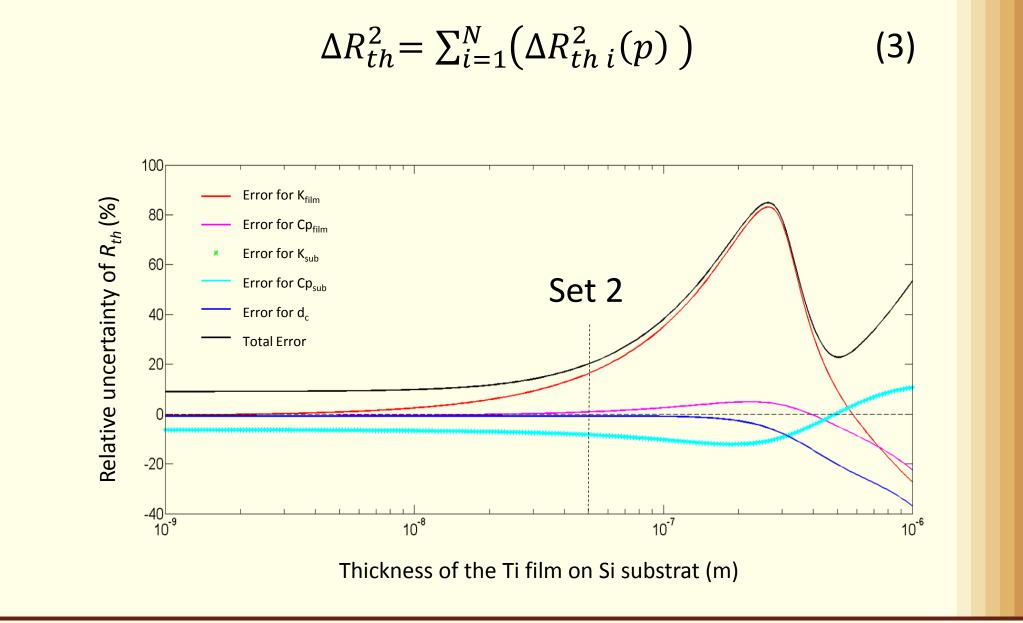
 $S_p^A = \frac{\partial \ln A}{\partial \ln p} \qquad S_p^{\varphi} = \frac{\partial \varphi}{\partial \ln p} \qquad (2)$ Where A and φ are the amplitude and phase of T_{AC} respectively.

Set 2 Ti/Si

After R_{th} determination for all samples, the uncertainties are calculated using equation (3)⁴. The standard uncertainties for the measurand psupposed know $\Delta R_{th i}(p)$ as: 50% for k_{film} ; 10% for Cp_{film} ; 10% for k_{sub} ; 10% for Cp_{sub} and 20% for d_c . The combined standard uncertainty ΔR_{th} is an estimated standard deviation and characterizes the dispersion of the values that could reasonably be attributed to the measurand p.

temperature T_{AC} on the surface of the sample:


$$T_{AC}(\mathbf{f}) = \frac{(-1+\mathbf{i}) \mathbf{q}}{2\mathbf{e}_{1}\sqrt{\pi \mathbf{f}}} \times \frac{1 - e^{2(1+\mathbf{i})\sqrt{\frac{\pi \mathbf{f}}{a_{1}}} \times \mathbf{d}_{C}} \times \frac{\frac{\mathbf{e}_{2}}{\mathbf{e}_{1}} + (\mathbf{i}+1)\mathbf{R}_{\mathrm{th}}\mathbf{e}_{2}\sqrt{\pi \mathbf{f}} + 1}{\frac{\mathbf{e}_{2}}{\mathbf{e}_{1}} - (\mathbf{i}+1)\mathbf{R}_{\mathrm{th}}\mathbf{e}_{2}\sqrt{\pi \mathbf{f}} - 1}}$$


$$e_{1} = \mathrm{Effusivity} \text{ of the film} \qquad f = \mathrm{Frequency} \\ e_{2} = \mathrm{Effusivity} \text{ of the substrate} \qquad q = \mathrm{Heat} \mathrm{flux} \\ a_{1} = \mathrm{Diffusivity} \text{ of the film} \qquad R_{th} = \mathrm{Thermal boundary resistance} \\ d_{c} = \mathrm{Thisckness} \text{ of the first layer}$$

$$(1)$$

Experimental samples

Set 1	Set 2	
Titanium coating on silicon substrate	Titanium coating on silicon and Stainless steel substrates	
Coating thicknesses d_c : 230, 186, 90 and 45 nm	4 samples with same coating thickness d_c : 50 nm	
Substrate thickness : 500 µm	2 different speeds of deposition: 0.5 and 0.1 nms ⁻¹	

Conclusions

- High sensitivity to R_{th} , no sensitivity to thermal conductivity of the coating,
- Uncertainties are between 10 and 22%,
- metal/metal interface gives lower R_{th}
- Strong dependence on the nature of the substrate (factor 10),
- No influence of the deposition speed for silicon substrate,
- R_{th} decrease of 25% with lower speeds of deposition on stainless steel substrate,
- High uncertainty on k_{film} gives only 15% of uncertainty on R_{th} ,
- For better measurements and lower uncertainty it's better to have a thinner film $(d_c/2)$.

Fabrication process: PVD 'EVA 300' (Alliance Concept)

Literature cited

- 1. N. Horny, et *al.* (2016). Optimization of thermal and mechanical properties of bio-polymer based nanocomposites. *Polymer Degradation and Stability*.
- 2. J. Pelzl, et al. (2015). Correlation Between Thermal Interface Conductance and Mechanical Adhesion Strength in Cu-Coated Glassy Carbon. International Journal of Thermophysics, 36(9), 2475-2485.
- 3. C. Jensen, et al. (2013). Thermal conductivity profile determination in proton-irradiated ZrC by spatial and frequency scanning thermal wave methods. Journal of Applied Physics, 114(13), 133509.
- http://www.bipm.org/en/publications/guides/gum.html for more information about Evaluation of measurement data Guide to the expression of uncertainty in measurement, JCGM 100:2008.

Million Line Heraeus

Heat transfer and heat conduction on the nanoscale WE-Heraeus-Seminar Bad Honnef April 10th-15th 2016

Acknowledgments

The research leading to these results has received funding from the Alsace Champagne-Ardenne Lorraine Region

