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Applications of Thermal Radiation 

• Solar energy harvesting 

• Astronomy and space exploration 

• Thermophotovoltaics 

• Combustion systems 

• Materials processing 

   and manufacturing 

• Cryogenics 

• Metrology 
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Negative Refractive Index (NIM) 

 

 

i    

Negative   exists in 

metal or polar materials 





i    

Negative   does not exist 

in natural materials at 

optical frequencies 
Negative refraction  superlens 

n



n i  
PIM 

NIM 

Passive materials (lossy or lossless): 

Imaginary part of permittivity, permeability or 

refractive index is always non-negative. 

Nanoscale Thermal Radiation Lab 

See, e.g., Zhang, Z.M., Nano/Microscale Heat 

Transfer, McGraw-Hill, New York, 2007. 
McGraw-Hill (2007) 
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Refraction from a PIM to a NIM 












 0  &  0 if   

0  &  0 if     
n

Veselago, Sov. Phys. Usp. 10, 509 (1968). 

Medium 1, n1 > 0 

 

Medium 2, n2 < 0 
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q1 
H 

k1 
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n = 1 

A NIM slab acts as a lens. 
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Diamagnetism or Magnetic Response 

(a)                  (b)                  (c)                  (d)                (e)(a)                  (b)                  (c)                  (d)                (e)

Various structures can induce magnetic responses: 

 

Negative magnetic permeability (relative to vacuum): 

2

2 2
0

( ) 1
F

i
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Magnetic materials seldom exist in natural materials at 

optical frequencies 
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Tailoring Optical and Radiative Properties  

 Coherent Thermal Emission 

 Unusual Transmission and IR Polarizers 

 Phonon-Mediated MPs 

 Thermophotovoltaic Emitters 

 Measurements 

Nanoscale Thermal Radiation Lab 
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Proposed Structure vs Simple Grating 

Parameters: 

grating period L = 500 nm 

metal strip width w = 250 nm 

grating thickness h = 20 nm 

spacer thickness d = 20 nm 

L
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Simple Grating 

d =0 
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Results 

• Method:  

     Rigorous coupled-wave 

analysis (RCWA) 

 

• The proposed structure 

has more reflectance 

dips comparing  with the 

simple grating, which 

should result from 

surface magnetic 

polaritons. 

Surface plasmon 

polariton (SPP) 
Magnetic  

polariton (MP) 
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Contour Plots of Emissivity 

(a) Simple grating (b) Proposed structure 

Lee, Wang, and Zhang, Optics Express 16, 11328 (2008) 
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Multiple Modes of Resonance 

11 
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Equivalent LC Circuit Model 
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Resonance condition 

Lee, Wang, and Zhang, Optics Express 16, 11328 (2008) 
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The coefficient in the Cm term 

Parallel plate capacitance. The coefficient should be close 

to 0.25 in this case due to nonuniform charge distribution. 



Inclined Aluminum Plate Arrays 

A 

(Upper) Field distribution.  

 

(Left) Absorptance contour 

and the triangle marks are 

from LC prediction. 

 

For details, see Wang et al. 

JQSRT (2013 in press). 
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Resonance Transmission in Deep Gratings 
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Wang and Zhang, Appl. Phys. Lett. (2009) 
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Tailoring Transmittance 

L

gd

w E k

H
q1 layer nanoslit Ag 

SiO2 

2 layer nanoslits 

Transmission  

enhancement 

w = 350 nm 

L = 500 nm 

We show see next that these 

are due to the excitation of 

magnetic polaritons! 

Wang and Zhang, JOSA_B (2010) 



Simple gratings 

at normal incidence 

Double-layer slit array 

at normal incidence 

x (nm) 

z
 (

n
m

) 

Ag Ag 

Diamagnetic behavior! 

EM Field Distribution: MP1 



Ag 

Ag 
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L = 500 nm, w = 350 nm, 

d = 30 nm, h = 70 nm. 

MP1 is @ 5120 cm-1 

Electric Field Vectors 

Electric field vectors do not form a loop 



Electric Field Vectors and Current 

Density Vectors  

0
t




  


D
J E j

0= + = ( )i i        

Note that J includes both the conductive current 

density due to free charge and the displacement 

current density, which is 

The complex conductivity can be expressed as :  

Full current density is : 
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Current Density Vectors Do Form a Loop 
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Near-IR Polarizer with Very High 

Extinction Ratio 

21 
Liu, Zhao, and Zhang, Optics Express 21, 10502 (2013) 

P = 500 nm, Wg = 150 nm,     

tm = 400 nm, and ts = 30 nm 



Field Distributions and LC Models 
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Simple LC models 

allow the prediction of 

resonance requencies 

for both P1 and P2 

(below): 

(e) 

Liu, Zhao, and Zhang, Optics Express 21, 10502 (2013) 

P1 

P2 
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Phonon-mediated MPs in SiC Slit 

Arrays 

Wang and Zhang, Opt. Express 19, A126 (2011)  

h = 3 m; 836 cm-1 

h = 6.6 m; 836 cm-1 

L = 5 m; w = 4.5 m; h = 3 m 
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Phonon-mediated MPs in SiC Gratings 
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Grating height, h (m) 
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(b) L = 5 m, w = 4.5 m, h = 1 m 

Wang and Zhang, Opt. Express 19, A126 (2011)  
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Cannot use plasma frequency for Lk. 



 Thermophotovoltaic (TPV) System 

Heat 
 

 

hn > Eg 

TPV Cell Material Bandgap Eg (ev) / (m) 

GaSb 0.72 / 1.72 

InxGa1-xSb 0.17 - 0.72 / 7.29 – 1.72 

InxGa1-xAs 0.36 – 1.42 / 3.44 – 0.87 

…… …… 

Only photons with energy 

higher than Eg of the TPV cells 

can be absorbed to generate 

electron-hole pairs. 
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See for example, Basu et al., 2007, Int. J. Energy Res. 31, pp. 689-716. 
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Microstructures as TPV Emitters 

1D tungsten grating/film 

metameterial 

Wang and Zhang, 2012, Appl. Phys. Lett. 

100, p. 063902 . 

SPP MP 
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LC Circuit Model and Current Density Loop for 

MP Resonance 
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LC Model: 

Current Density: 

free current density displacement current density 

MP = 1.873 m 
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Field Distributions and Current Loop 
Inside W, E and J have different signs 
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2D gratings will work well 

for both polarizations ! 

Normal, Spectral Emittance 
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Zhao et al., submitted to Int J Heat Mass Transfer (2013) 



Surface Plasmon Polaritons on Gratings 
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Wave vector of SPP: 

Conditions for the excitation of SPP 

with 2D gratings: 
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SPP for TM and TE Waves 
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Spectral Emittance of the 2D Grating 

SPP MP SPP MP 

SPPs split and shift to both sides SPPs shift to short wavelengths 

MP frequencies are insensitive to the angle 32 



Directional Emittance of the 2D 

Grating (Effect of Azimuthal Angle) 

q  is fixed at 45 
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Large emittance in the desired spectral region that is 

insensitive to polarization or direction.  



FTIR Spectral Measurements 

Specular reflectance accessory 

(near normal incidence) 
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Spectrum 

Interferogram 
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sampling 
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Reflectance 

Accessory 
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(1 – 20 m wavelength range) 

ADC 



High-Temperature Emissometer 

Wang et al., J. Heat Transfer, 134, 072701 (2012). 
35 



Emissometry Setup 
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Heater Assembly 

Solid Angle: 8.35E3 sr 

Rotation Resoln.: 0.01º 

Max. Temp: 1000 K 

PID control T: ±1 K 

Detector: InSb (>500 K, 2 – 5.5 m) 

               DTGS (>700 K, 0.7 – 20 m) 

Specs: 



Spectral-directional emittance: 

Here, SS is the signal from the sample surface at TS 

          SB is the signal from the Blackbody at TS 

          SA is the signal from the ambient at TA 

Emissometry Calibration 
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Au Grating-SiO2 Spacer-Au Film 

(d) RCWA model 

Wang and Zhang, J. Heat Transfer (to appear in MNHMT special issue, 2013) 

Fabricated sample with 

a period of 7 m  



Measured Emittance for TM Waves 
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Comparison with Prediction 
(normal emittance) 
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Nanoscale Thermal Radiation Lab 

Wang and Zhang, J. Heat Transfer (to appear in MNHMT special issue, 2013) 
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Summary 

Nanoscale Thermal Radiation Lab 

1. Coherent thermal emission 

and TPV applications with an 

experimental demonstration 

2. Unique transmission characteristics 

and a design of IR polarizers 
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