Applications of magnetic polaritons in micro/nanostructures for tailoring radiative properties

Zhuomin (Z.M.) Zhang

G.W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta, GA, USA

Presented at the Nanoscale Radiative Heat Transfer Physics School, Les Houches, France May 12-17, 2013

www.me.gatech.edu/~zzhang

Outline

- Introduction
- Negative Refractive Index & Metamaterials
- Magnetic (Plasmon) Polaritons (MPs)
- Tailoring Optical and Radiative Properties
- Summary and Acknowledgements

Applications of Thermal Radiation

- Solar energy harvesting
- Astronomy and space exploration
- Thermophotovoltaics
- Combustion systems
- Materials processing and manufacturing
- Cryogenics
- Metrology

Negative Refractive Index (NIM)

Negative ε' exists in metal or polar materials

Negative μ' does not exist in natural materials at optical frequencies

Negative refraction \rightarrow superlens

Passive materials (lossy or lossless): Imaginary part of permittivity, permeability or refractive index is always non-negative.

See, e.g., Zhang, Z.M., *Nano/Microscale Heat Transfer*, McGraw-Hill, New York, 2007.

Refraction from a PIM to a NIM

Veselago, Sov. Phys. Usp. 10, 509 (1968).

Diamagnetism or Magnetic Response

Magnetic materials seldom exist in natural materials at optical frequencies

Various structures can induce magnetic responses:

Negative magnetic permeability (relative to vacuum):

$$\mu(\omega) = 1 - \frac{F\omega^2}{\omega^2 - \omega_0^2 + i\gamma\omega}$$

Tailoring Optical and Radiative Properties

- Coherent Thermal Emission
- Unusual Transmission and IR Polarizers
- Phonon-Mediated MPs
- Thermophotovoltaic Emitters
- Measurements

Proposed Structure vs Simple Grating

Parameters:

grating period $\Lambda = 500$ nm metal strip width w = 250 nm grating thickness h = 20 nm spacer thickness d = 20 nm

Simple Grating

Results

- Method: Rigorous coupled-wave analysis (RCWA)
- The proposed structure has more reflectance dips comparing with the simple grating, which should result from surface magnetic polaritons.

Contour Plots of Emissivity

(a) Simple grating

(b) Proposed structure

Lee, Wang, and Zhang, Optics Express 16, 11328 (2008)

Multiple Modes of Resonance

11

Equivalent LC Circuit Model

Resonance condition

$$Z_{\text{tot}} = \frac{i\omega(L_{\text{m}} + L_{\text{e}})}{1 - \omega^{2}C_{\text{e}}(L_{\text{m}} + L_{\text{e}})} - \frac{2i}{\omega C_{\text{m}}} + i\omega(L_{\text{m}} + L_{\text{e}}) \longrightarrow \omega_{\text{R}} = \left(\frac{C_{\text{m}} + C_{\text{e}} - \sqrt{C_{\text{m}}^{2} + C_{\text{e}}^{2}}}{(L_{\text{m}} + L_{\text{e}})C_{\text{m}}C_{\text{e}}}\right)^{1/2}$$

where, $L_{\text{m}} = \frac{0.5\mu_{0}dw}{l}$, $L_{\text{e}} = \frac{w}{\gamma h l \omega_{p}^{2} \varepsilon_{0}}$, $C_{\text{m}} = \frac{0.222\varepsilon_{\text{d}}\varepsilon_{0}wl}{d}$, and $C_{\text{e}} = \frac{\pi\varepsilon_{0}l}{\ln\left[(\Lambda - w)/h\right]}$

Lee, Wang, and Zhang, Optics Express 16, 11328 (2008)

1/2

The coefficient in the C_m term

Parallel plate capacitance. The coefficient should be close to 0.25 in this case due to nonuniform charge distribution.

Inclined Aluminum Plate Arrays

(Upper) Field distribution.

(Left) Absorptance contour and the triangle marks are from LC prediction.

For details, see Wang et al. JQSRT (2013 in press).

Resonance Transmission in Deep Gratings

$$Z_{\text{tot}} = 2i \left[\omega (L_{\text{m}} + L_{\text{e}}) - (\omega C_{\text{m}})^{-1} \right]$$
$$\omega_{\text{R}} = \left[(L_{\text{m}} + L_{\text{e}}) C_{\text{m}} \right]^{-1/2}$$

 $\alpha = 1 - R - T$

Wang and Zhang, Appl. Phys. Lett. (2009)

Tailoring Transmittance

EM Field Distribution: MP1

Electric field vectors do not form a loop

Electric Field Vectors and Current Density Vectors

The complex conductivity can be expressed as :

$$\sigma = \sigma' + i\sigma'' = \omega \varepsilon_0(\varepsilon'' - i\varepsilon')$$

Full current density is :

$$\mathbf{J} = \boldsymbol{\sigma} \mathbf{E} = \mathbf{j}_0 + \frac{\partial \mathbf{D}}{\partial t}$$

Note that **J** includes both the conductive current density due to free charge and the displacement current density, which is

$$\mathbf{J}_{\mathrm{D}} = \varepsilon_0 \, \frac{\partial \mathbf{E}}{\partial t} + \frac{\partial \mathbf{P}}{\partial t}$$

 $\mathbf{J} = \boldsymbol{\sigma} \mathbf{E} = (\boldsymbol{\sigma}' + i\boldsymbol{\sigma}'') (\mathbf{E}' + i\mathbf{E}'') = \boldsymbol{\sigma}' \mathbf{E}' - \boldsymbol{\sigma}'' \mathbf{E}'' + imag(\mathbf{J})$

Current Density Vectors Do Form a Loop

		• • • • • • • •				
0.1	0.15	0.2	0.25 X	0.3	0.35	0.4 20

Near-IR Polarizer with Very High Extinction Ratio

Liu, Zhao, and Zhang, Optics Express 21, 10502 (2013)

Field Distributions and LC Models

Simple LC models allow the prediction of resonance requencies for both P1 and P2 (below):

Liu, Zhao, and Zhang, Optics Express 21, 10502 (2013)

Phonon-mediated MPs in SiC Slit Arrays

Ror

Phonon-mediated MPs in SiC Gratings

LC model for MP1:

$$L_{\rm m,coil} = \mu_0 hb/l, \quad L_{\rm k,ph} = -(2h+b)/(\omega^2 \varepsilon_0 \varepsilon' l\delta), \text{ where } \varepsilon_{\rm SiC} = \varepsilon' + i\varepsilon''$$

$$C_{\rm m,3} = c_2 \varepsilon_0 hl/b, \text{ where } c_2 = 0.55 \qquad \text{Cannot use plasma frequency for } L_{\rm k}$$

$$\text{Total impedance:} \qquad Z_{\rm tot} = i\omega \left(L_{\rm m,coil} + L_{\rm k,ph} - \frac{1}{\omega^2 C_{\rm m,3}} \right) = 0$$

Wang and Zhang, Opt. Express 19, A126 (2011)

Thermophotovoltaic (TPV) System

Only photons with energy higher than E_g of the TPV cells can be absorbed to generate electron-hole pairs.

TPV Cell Material	Bandgap <i>E_g</i> (ev) / (μm)
GaSb	0.72 / 1.72
In _x Ga _{1-x} Sb	0.17 - 0.72 / 7.29 – 1.72
In _x Ga _{1-x} As	0.36 - 1.42 / 3.44 - 0.87

See for example, Basu et al., 2007, Int. J. Energy Res. 31, pp. 689-716.

Microstructures as TPV Emitters

LC Circuit Model and Current Density Loop for MP Resonance

$$Z_{\text{tot}}(\omega) = \frac{L_{\text{m}} + L_{\text{e}}}{1 - \omega^2 C_{\text{g}}(L_{\text{m}} + L_{\text{e}})} - \frac{2}{\omega^2 C_{\text{m}}} + L_{\text{m}} + L_{\text{e}} = 0 \implies \lambda_{\text{MP}} = 1.873 \,\mu\text{m}$$

Current Density:

$$\sigma = \sigma' + i\sigma'' = \omega \varepsilon_0 (\varepsilon'' - i\varepsilon') = -i\omega \varepsilon \varepsilon_0$$
$$\mathbf{J} = \sigma \mathbf{E} = (\sigma' + i\sigma'') (\mathbf{E}' + i\mathbf{E}'') = \sigma' \mathbf{E}' - \sigma'' \mathbf{E}'' + imag(\mathbf{J})$$
free current density displacement current density

Field Distributions and Current Loop

Inside W, E and J have different signs

28

Normal, Spectral Emittance

Zhao et al., submitted to Int J Heat Mass Transfer (2013)

Surface Plasmon Polaritons on Gratings

ω

Wave vector of SPP:

$$k_{\rm spp} = \frac{\omega}{c_0} \sqrt{\frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2}}$$

Conditions for the excitation of SPP with 2D gratings:

$$\mathbf{k}_{\text{spp}} = \mathbf{k}_{\text{inc},||} + \frac{2\pi}{\Lambda_x} m \hat{\mathbf{x}} + \frac{2\pi}{\Lambda_y} n \hat{\mathbf{y}}$$

 $m, n \in [-M, M]$

SPP for TM and TE Waves

Spectral Emittance of the 2D Grating

SPPs split and shift to both sides

SPPs shift to short wavelengths

MP frequencies are insensitive to the angle

Directional Emittance of the 2D Grating (Effect of Azimuthal Angle)

Large emittance in the desired spectral region that is insensitive to polarization or direction.

FTIR Spectral Measurements

 $(1 - 20 \ \mu m \text{ wavelength range})$

High-Temperature Emissometer

Wang et al., J. Heat Transfer, 134, 072701 (2012).

Emissometry Setup

Specs: Solid Angle: 8.35E–3 sr Rotation Resoln.: 0.01° Max. Temp: 1000 K PID control $\Delta T: \pm 1 \text{ K}$

Detector: InSb (>500 K, 2 – 5.5 μm)

DTGS (>700 K, 0.7 – 20 µm)

Emissometry Calibration

Spectral-directional emittance:

$$\varepsilon_{\nu}'(\nu,\theta) = \frac{S_{\rm S}(\nu,T_{\rm S}) - S_{\rm A}(\nu,T_{\rm A})}{S_{\rm B}(\nu,T_{\rm S}) - S_{\rm A}(\nu,T_{\rm A})}$$

Here, $S_{\rm S}$ is the signal from the sample surface at $T_{\rm S}$ $S_{\rm B}$ is the signal from the Blackbody at $T_{\rm S}$ $S_{\rm A}$ is the signal from the ambient at $T_{\rm A}$

Sample: *n*-doped 6H-SiC wafer (resistivity of 0.02 to 0.1 Ω-cm)

Au Grating-SiO₂ Spacer-Au Film

(c)

Fabricated sample with a period of 7 μ m

Wang and Zhang, J. Heat Transfer (to appear in MNHMT special issue, 2013)

Measured Emittance for TM Waves

Comparison with Prediction (normal emittance)

Wang and Zhang, J. Heat Transfer (to appear in MNHMT special issue, 2013)

Summary

1. Coherent thermal emission and TPV applications with an experimental demonstration

2. Unique transmission characteristics and a design of IR polarizers

z

SiO

W (tungsten)

Former/current students and collaborators on this project:

- Dr. Liping Wang, Assis. Prof., Arizona State Univ.
- Dr. Bong Jae Lee, Assis. Prof., KAIST, Korea
- Mr. Ahmad Haider (former M.S. student)
- Mr. Bo Zhao (current Ph.D. student)
- Mr. Xianglei Liu (current Ph.D. student)
- Dr. Yong Shuai (visiting scholar from HIT)

Sponsors

- National Science Foundation (NSF)
- Department of Energy (DoE)

www.me.gatech.edu/~zzhang