# Nanothermodynamics and nearfield heat transfer

## **Miguel Rubi**



A. Perez L. Lapas





## **Heat Transfer coefficient**



#### Enhancement of the heat flux in the near-field

Hu et al., Appl. Phys. Lett. 92, 133106 (2008)

### **Thermal conductance**



Domingues et al., Phys. Rev. Lett. 94, 085901 (2005)

## **Fluctuation-dissipation regime**

**Fluctuating electrodynamics** 



Valid when thermalization is very fast

### Beyond the dipolar approximation...



A.Pérez, J.M.Rubi., L. Lapas, Phys. Rev. B 77, 155417 (2008)

$$\begin{aligned} G_{12}^{dip}(T_0) &= \frac{3}{8\pi^3} \left( \int_0^\infty \Theta'(\omega, T_0) \alpha_{(1)}^{"} \alpha_{(2)}^{"} d\omega \right) d^{-6} \\ G_{12}^{qd}(T_0) &= \frac{1}{2\pi^3} \int_0^\infty \Theta'(\omega, T_0) \left\{ 45 \left( \alpha_{(1)}^{"} \beta_{(2)}^{"} + \alpha_{(2)}^{"} \beta_{(1)}^{"} \right) d^{-8} + \frac{15}{4} \beta_{(1)}^{"}(\omega) \beta_{(2)}^{"}(\omega) d^{-10} \right\} d\omega \end{aligned}$$



Dipolar approximation: d>8R Domingues *et al.*,PRL, 94, 085901 (2005)





Planck's theory is not valid when length scales are comparable to the wave length of thermal radiation

# **Planck's radiation law**

N: photons in a box with frequency quantum states  $N_{\omega}$ : photons with frequency  $\omega$  $g_{\omega}$ : quantum states



Single configuration:

x: photon |...|: state

xxx | x | xx | xxxx | xxx | xx

Bosons: no restriction on the numeber of particles in each level

Solution of microstates; combinatorial problem

$$\Omega_{BE} = \prod_{\omega} \frac{(N_{\omega} + g_{\omega} - 1)!}{N_{\omega}!(g_{\omega} - 1)!}$$

# Planck radiation law from thermodynamics

i) Maximizing the number of microstates:

 $\ln \Omega_{\rm BE} = \sum \ln (N_v + g_v)! - \sum \ln N_v! - \sum \ln g_v!$ 

ii) Condition: energy is constant

 $\sum N_{v} hv = U = \text{const}$ 

iii) Boltzmann entropy

$$dS = k \ d \ln \Omega_{\rm BE} = k \sum \ln \left(1 + \frac{g_v}{N_v}\right) dN_v$$

$$N_{\nu} = \frac{g_{\nu}}{e^{\beta h \nu} - 1} \qquad \beta?$$

$$N_{v} = \frac{8\pi V}{c^{3}} \frac{v^{2}}{e^{hv/kT} - 1}$$

$$dS = k\beta \ dU$$
$$dS/dU = 1/T$$

$$\beta = \frac{1}{kT}$$

# **Plank radiation law from kinetics**

#### Atoms in a radiation field

 $E_2$ i) Absorption of photons  $\nu_{12} = E_2 - E_1$  $E_1$  $\frac{dN(1\to 2)}{dt} = B_{12}N_1 u(\nu_{12})$ **Detailed** balance ii) **Emission of photons**  $B_{21} = B_{12}$  $\frac{dN(2 \to 1)}{dt} = A_{21}N_2 + B_{21}N_2 u(\nu_{12})$ Thermal equilibrium:  $\frac{dN(1\to 2)}{dN(2\to 1)} = \frac{dN(2\to 1)}{dN(2\to 1)}$ **Radiation field Spontaneous**  $\frac{N_2}{N_1} = e^{-h \nu_{12} / \tau}$  $u(\nu_{12}) = \frac{(A_{21}/B_{12})}{e^{h\nu_{12}/\tau}}$ Wien displacement law  $u(\nu) = \alpha \nu^3 f(\nu/\tau)$  $= \alpha \nu^3$  $\alpha \nu^3$  $u(v_{12}) =$  $B_{12}$ 

# Nanothermodynamics

Nanosystems: fluctuations are important One has to adopt a probabilistic description

 $dQ = T\delta s = -\mu\delta n$ 

 $\frac{\partial n}{\partial t} = -\Delta J$ 

-D. Reguera, J.M. Rubi and J.M. Vilar, J. Phys. Chem. B (2005) -J.M. Rubi, Scientific American, Nov., 40 (2008) http://www.ffn.ub.es/webmrubi



entropy production

 $T = -l(e^{\frac{\mu_2}{kT}} - e^{\frac{\mu_1}{kT}})$ 

Nonlinear (Arrhenius)



ii) Mesoscopic conductors (Landauer):



$$I = I^{>} - I^{<} = \frac{2q^{2}}{h}M\frac{\mu_{L} - \mu_{R}}{q}$$

 $T_R$ 

#### iii) Photons

 $T_L$ 

$$J_{st}(\omega) = -D_L(\omega)D_R(\omega)\left[n(\omega, T_R) - n(\omega, T_L)\right]$$
$$n(\omega, T) = \frac{1}{\exp(\hbar\omega/kT) - 1}$$

$$J_{st} = \frac{\hbar}{4\pi^3 c^3} \int d\omega d\vec{\Omega}_p \omega^3 J_{st}(\omega) = \sigma (T_R^4 - T_L^4)$$

iv) Thermal emission, adsorption (Langmuir), electrokinetic phenomena (Butler-Volmer): Activated processes.



## Entropy

### Statistics:



# **Entropy production**

$$\frac{\partial S}{\partial t} = -\int \mathbf{J} (\mathbf{\Gamma}, t) \cdot \frac{\partial}{\partial \mathbf{\Gamma}} \frac{N\mu(\mathbf{\Gamma}, t)}{T} d\mathbf{\Gamma}$$

$$\mathbf{J} (\mathbf{\Gamma}, t) = -L(\mathbf{\Gamma}) \frac{\partial}{\partial \mathbf{\Gamma}} \frac{N\mu(\mathbf{\Gamma}, t)}{T}$$

$$\mathbf{J} (\mathbf{\Gamma}, t) = -D \frac{\partial}{\partial \mathbf{\Gamma}} \Omega \exp\left(\frac{N\mu(\mathbf{\Gamma}, t)}{k_B T}\right) = -D \frac{\partial}{\partial \mathbf{\Gamma}} n(\mathbf{\Gamma}, t).$$
Onsager coefficient
$$J(t) = -D_L D_R [n(\mathbf{p}_L, t) - n(\mathbf{p}_R, t)]$$

$$\frac{\partial}{\partial t} n(\mathbf{\Gamma}, t) = \frac{\partial}{\partial \mathbf{\Gamma}} \cdot D(\mathbf{\Gamma}) \frac{\partial}{\partial \mathbf{\Gamma}} n(\mathbf{\Gamma}, t)$$

## Non-equilibrium Stefan-Boltzmann law

$$J_{st}(\omega) = -D_L(\omega)D_R(\omega)\left[n(\omega, T_R) - n(\omega, T_L)\right]$$

$$n(\omega,T) = \frac{1}{\exp(\hbar\omega/kT) - 1}$$

$$J_{st} = \frac{\hbar}{4\pi^3 c^3} \int d\omega d\vec{\Omega}_p \omega^3 J_{st}(\omega) = \sigma (T_R^4 - T_L^4)$$

Shorter distances, no longer valid Near-field thermodynamics

#### **ELECTROMAGNETIC WAVES CONFINED IN A VERY NARROW GAP**



Spectrum of electromagnetic energy for different detection distances above surface of silicon carbide normalized by its maximum value in far field at T= 300 K. (J.-J. Greffet and C. Henkel, 2007)

When the distance diminishes, thermal radiation becomes a highly directional beam of coherent radiation.

## The narrow gap acts as a resonant cavity

Electromagnetic energy density above a plane interface separating glass (amorphous, optical phonons poorly defined) at T = 300 K from vacuum at T = 0 K



## **Photon Kinetics**

$$J = \left(\frac{D_{pp}D_{xx}}{D_{xp}} - D_{px}\right)\frac{\partial n}{\partial x}$$

$$J = \frac{\hbar}{\tau^*} (n_2 - n_1)$$
$$\tau^*(t) = \int n\tau(n) d\Gamma$$

Heat flux results from the contribution of Different modes

```
A. Perez, L. Lapas, J.M. Rubi, PRL, 103, 048301
(2009)
```

*i*)  $d \gg \lambda_T$ ; black body *ii*)  $d \leq \lambda_T$   $\Delta x \Delta p \geq h$  $\Delta p \geq \frac{h}{d}; \ \Delta E \geq h \frac{Kc}{d} \equiv h \omega_R$ 



Fitting parameters:  $\omega_0, \sigma$ 

#### Y. V. Denisov, A.P. Rylev, JEPT Lett. 52, 411 (1990)

-Statistical model which can describe collective motions. -Stems from the existence of a hierarchy of relaxations mechanisms in the material -The energy consists of a large number of contributions; central limit theorem



FIG. 1. *I*—Low-frequency depolarized vibrational spectrum of glassy B<sub>2</sub>O<sub>3</sub>; 2–4—approximations of this spectrum; 2— $I(\omega) = (n(\omega) + 1)\omega \exp[-\{\ln(\omega/\omega_0)\}^2]; 3-I(\omega) = (n(\omega) + 1)\omega^3/(\omega^2 + \omega_1^2)^2; 4-I(\omega) = (n(\omega) + 1)\omega^2 \exp[-(\omega/\omega_2)].$ 

Yu. V. Denisov and A.P. Rylev, JETP Lett. 52 (1990), 411.

## Heat transfer coefficient

$$\begin{split} H(T_0) &= \mathcal{Q}/(T_1 - T_2) \\ Q &= \int c\hbar \tau^*(\omega)^{-1} \left[ N\left(\omega, T_1\right) - N(\omega, T_2) \right] g\left(\omega\right) d\omega \\ \\ H(d, T_0) &= \\ \frac{k_B}{\tau'_o d^2} \left[ 1 + \frac{(2\pi)^{1/2} vc}{\sigma \omega_0 d} \exp\left\{ - \left[ \frac{\ln(2\pi vc/\omega_0 d)}{\sqrt{2}\sigma} \right]^2 \right\} \right] \\ \left( \frac{hvc/2k_B T_0 d}{\sinh(hvc/2k_B T_0 d)} \right)^2, \\ \\ \hline T_0 &= \left( T_1 + T_2 \right) / 2 \end{split}$$

$$\begin{aligned} & \text{FF} \quad H \sim T_0^3 \\ \text{NF} \quad H \sim T_0 \end{split}$$

A. Perez, L. Lapas, J.M. Rubi, PRL, 103, 048301 (2009)





S. Shen, A. Mavrokefalos, P. Sambegoro, and G. Chen, Appl. Phys. Lett. 100, 233114 (2012).



$$G = (1/A) \int_0^R H[\tilde{d}(r), T_0] 2\pi r dr$$

$$\tilde{l}(r) = d + b + R - \sqrt{R^2 - r^2}$$

514.

0



#### A. Perez-Madrid, L. Lapas, J.M. Rubi, Plos One, 8, e58770 (2013)

# Conclusions

- We have evaluated the heat transfer coefficient and the thermal conductance in a wide range of length scales, from the far-field to the near-field, giving a thermokinetic description of several experiments involving heat radiation through a very narrow gap.
- The thermokinetic theory presented may also be used in the study of other heat exchange processes such as those occurring in phonon systems and in the analysis of thermal contributions to Casimir forces.