Near-field thermal effects at mesoscopic scale

I.J. Maasilta

Nanoscience Center, Department of Physics, University of Jyväskylä, Finland maasilta@jyu.fi

JYVÄSKYLÄN YLIOPISTO University of Jyväskylä

17.05.2013

Nanoscience Center

Outline:

sub-Kelvin to Kelvin temperature range near-field heat transfer

Simple theory
Experimental design
Preliminary data

17.05.2013

Why low temperatures?

- Can access extreme near field conditions more easily, as dominant thermal wavelengths are 2-3 orders of magnitude larger
- Possible relevance in low-temperature detector applications, where *typical* operating temperatures are ~ 0.1 K

Nanoscience Center

Examples of ultra-sensitive devices at low temperatures:

Spider-web bolometers, force/mass NEMS detectors, transition edge sensors

JPL built 0.1 K spider-web bolometer in Planck G phonon ~ 100 pW/K , P ~ 2.5 pW

0.1 K TES X-ray detector array and SQUID readout, NIST+JYU

17.05.2013

Nanoscience Center

Nanoscience Center

UNIVERSITY OF JYVÄSKYLÄ

Without low-T detectors, no high-res CMB data ! Space is too HOT for the detectors (dilution refrigerator in space!)

Nanoscience Center Thermal Properties of Nanostructures

Example real devices in more detail

SRON FIR bolometer for future astronomy mission (SPICA) suspended SiN beams requirement

G ~ 0.1 pW/K , P ~ 3 fW

17.05.2013

Nanoscience Center

Example real devices in more detail 2:

G ~ 300 pW/K P ~ 50-100 pW/pixel

Thermal cross-talk??

NASA Goddard 32 x 32 = 1024 pixel superconducting X-ray transition edge sensor array Finnish 256 pixel array in progress (Jyväskylä+VTT)

17.05.2013

=> Need to understand and control thermal conductance in nanoscale

For bolometers, if thermal conductance is low, small heat loads lead to large temperature increase => more sensitivity

Thermal model for samples

- •Electron-phonon interactions
- •Phonon heat conductance

•Photon heat conductance

Low thermal conductance and cooling increases bolometer performance $(NEP \sim G^{1/2}T)$

17.05.2013

How does near-field thermal transport depend on temperature in an ideal case (Drude metals, parallel planar surfaces)? Most publications discuss only RT results

Nanoscience Center

- For a typical Drude metal (Au,Cu,Al...) at RT:
- Thermal near field starts at ~ few µm

Nanoscience Center

- Is dominated by s (TE)-polarized evanescent waves, with magnetic fields dominating
- Reaches saturation at distance ~ 1 nm
- Has a maximum power enhancement ~ 10⁵

17.05.2013

Temperature acts as a low-pass filter, cutting off higher frequency components, cut-off frequency moves linearly up with T (Wien's law)

Nanoscience Center

Example calculations for Drude Cu with a measured low-T mean free path:

Power spectra are very different from Planckian for spolarization (but close for p polarization)

Dominant frequency does not scale linearly with T for s-polarization ! (3 orders of magnitude difference at RT)

17.05.2013

Nanoscience Center

Position of dominant frequency for s-polarization also strongly dependent on gap distance

T = 0.01 K- 300K

17.05.2013

Nanoscience Center

Nanoscience Center

UNIVERSITY OF JYVÄSKYLÄ

Example calculations for Drude Cu with a measured low-T mean free path:

Thermal near field starts at ~ 1 mm – 10 cm distance

17.05.2013

- Is still dominated by s polarized evanescent waves, but a window of pdominance appears at low T when power first starts increasing
- Reaches saturation at distance ~ 1 μ m (0.01 K) 100 nm (1K)
- Has a maximum power enhancement ~ 10¹² (0.01 K) 10⁹ (1 K)

 Distance dependence is not affected by temperature

17.05.2013

Nanoscience Center

Power enhancement is stronger because near field contribution dies out more slowly with T than the far-field contribution Assume area 100 µm x 1 µm

Near field heat transfer measurable at mesoscopic distances (up to ~10 µm) at cryogenic temperatures !

17.05.2013

Nanoscience Center

sub-Kelvin to Kelvin temperature range near-field heat transfer Experimental design Preliminary data

Early idea: etch a trench between two metallic wires

P.J. Koppinen, J. T. Karvonen, L. J. Taskinen, I.J. Maasilta, AIP Conf. Proc. 850, 1556 (2006)

17.05.2013

Nanoscience Center

Les Houches 2013

100

1000

=> Move to suspended wire geometry to fully remove substrate between wires

Nanoscience Center

17.05.2013

Image: Nanoscience Center Thermal Properties of Nanostructures Typical device UNIVERSITY OF T

Low G (phonon thermal conductance) due to nanoscale suspended beams

> SINIS

(Superconductor-Insulator Normal metal) tunnel junction thermometry < 1K

SINIS tunnel junction
 coolers

nanowire length 10-20 μ m, thickness 60 nm and width 150-300 nm 4 supporting bridges length 5 μ m, thickness 60 nm and width 150 nm

P.J. Koppinen, I.J. Maasilta, *Phys. Rev. Lett.* **102**, 165502 (2009)

17.05.2013

Nanoscience Center

Background

UNIVERSITY OF JYVÄSKYLÄ

Tunnel junction thermometry

I-V characteristics non-linear with temperature

$$I(V) = \frac{1}{eR_T} \int_{\Delta}^{\infty} \frac{|E|}{\sqrt{E^2 - \Delta^2}} [f(E - eV, T_e) - f(E + eV, T_e)] dE$$

Independent of superconductor temperature Resolution (~0.1 mK at 100 mK)

Tunnel junction cooling

Tunneling of "hot" electrons from Fermi tail (bias voltage dependent, optimal at V $\sim \Delta$)

$$\dot{Q}_{cool} = \frac{1}{e^2 R_T} \int_{-\infty}^{\infty} (E - eV) g_S(E) [f_N(E - eV, T_N) - f_S(E, T_S)] dE$$

17.05.2013

Extremely low G allows measurements of power ~ 10 aW resolution with SINIS thermometry !

[1] C.M. Chang, M.R. Geller, Phys. Rev. B 71, 125304 (2005)

17.05.2013

17.05.2013

Image: Nanoscience Center Thermal Properties of Nanostructures Cooling results and modeling UNIVERSITY OF TVYASKYL

The point: we can accurately fit the T vs V curve with a thermal model that includes external input power as a parameter.

Les Houches 2013

17.05.2013

Manuscript in preparation

Les Houches 2013

17.05.2013

17.05.2013

Conclusions:

Nanoscience Center

- Near field thermal radiation can be in a relevant power scale compared with the most sensitive bolometric LT detectors
- At cryogenic temperatures, near field thermal radiation observable up to distances ~ 10 µm, currently
- More detailed experiments are in progress and will be finished in the near future

Current group members: Previous group member:

Dr. Saumyadip Chaudhuri

Tero Isotalo

Dr. Panu Koppinen (now at VTT Micronova, Espoo)