

Thermal radiation scanning tunnelling microscope (TRSTM): Near-field imaging and spectroscopy probe of the thermal emission

Yannick De Wilde

Institut Langevin, CNRS, ESPCI ParisTech, Paris

yannick.dewilde@espci.fr

Motivation : Theoretical predictions

Motivation : Far-field measurements

Antenna like emission pattern

Greffet, Carminati, Joulain, Mulet, Mainguy, Chen, Nature 416, 61 (2002)

DIFFRACTION

SPATIAL COHERENCE OF THERMAL EMISSION !!!

Probe of thermal emission in the near-field

OUTLINE

- > Infrared-NSOM & Thermal radiation scanning tunnelling (TRSTM) setup.
- > Examples using laser sources.
- > TRSTM for imaging thermal radiation in the near-field.
- > TRSTM for spectroscopy measurements.

Optical near-field : definition

Aperture NSOM

NSOM= near-field scanning optical microscope

Institut Langevin Nanoscale Radiative Heat Transfer. May 13, 2013

Aperture NSOM

Tip approach in an evanescent field.

$$I_{scat.}(x_t, y_t) = \sigma \left| E(x_t, y_t) \right|^2$$

Institut Langevin Nanoscale Radiative Heat Transfer. May 13, 2013

scanning PZT

IMAGINGDe Wilde, Formanek, Carminati, Gralak, Lemoine, Mulet, Joulain, Chen, Greffet, Nature 444, 740 (2006)SPECTROSCOPYBabuty, Joulain, Chapuis, Greffet, De Wilde, Phys. Rev. Lett. 110, 146103 (2013).

Mid IR s-NSOM Ë TRSTM: Tip preparation

Tungsten wire

Electrochemical etching

Mid IR s-NSOM Ë TRSTM: Tip gluing

De Wilde, Formanek, Aigouy, Rev. Sci. Instrum. 74, 3889 (2003)

Institut Langevin Nanoscale Radiative Heat Transfer. May 13, 2013

Mid IR s-NSOM Ë TRSTM: Cassegrain objective

Mid IR s-NSOM Ë TRSTM: HgCdTe detector

Liquid N₂ cooled Size: d=0.5 mm (5 10^{-2} cm)

Detectivity: $D^* \approx 4 \ 10^{10} \text{ cm Hz}^{1/2} \text{ W}^{-1}$

(>50 % between $\lambda \approx$ 7 µm - 12 µm)

$$Noise = \frac{d}{D^*} \approx 10^{-12} \frac{W}{Hz^{1/2}}$$

Super-resolution with external source: Imaging of nano-materials

Building block of active plasmonics: Slit doublet experiment

Building block of active plasmonics: Slit doublet experiment

Measured topography (AFM)

Measured near-field λ^1 7.5µm

Interference of counterpropagating SPPs generated by electrical pumping of a QC laser.

Collaboration: R. Colombellic group, IEF

Babuty, et al., Phys. Rev. Lett., 104, 226806, (2010)

Institut Langevin Nanoscale Radiative Heat Transfer. May 13, 2013

Remark 1: Far field background issue

Extracting the near-field contribution in the detector signal.

Tip-Scattered intensity in a plan perpendicular to metal surface.

Bousseksou, Babuty, Tetienne, Moldovan, Braive, Beaudoin, Sagnes, De Wilde, Colombelli, Optics Express 20, 13738 (2012).

Extracting the near-field contribution in the detector signal.

Lock-in demodulation

Infrared apertureless SNOM with laser source

Formanek, De Wilde, Aigouy, J. Appl. Phys. 93, 9548 (2003)

Remark 2: Tip illumination conditions

Thermal Radiation STM: New paradigm

Near-field imaging with the TRSTM

Joulain

Rémi Carminati

Boris Gralak ["]De Wilde, Formanek, Carminati, Gralak, Lemoine, Mulet, Joulain, Chen, Greffet, Nature **444**, 740 (2006).

"Shchegrov, Joulain, Carminati, Greffet, Phys. Rev. Lett., 85, 1548 (2000).

Joulain, Carminati, Mulet, Greffet, PRB 68, 245405 (2003).

Nanoscale Radiative Heat Transfer. May 13, 2013

Experiments: F. Formanek (ex-PhD,ESPCI)

TRSTM Images of pattern of Au on SiC

Energy selection : TRSTM images with filter at $\lambda = 10.9 \ \mu m$

Nature 444, 740 (2006).

Images TRSTM vs. EM-LDOS

B. Gralak Inst. Fresnel

TRSTM λ=10.9μm T=170°C

Higher harmonic demodulation

Institut Langevin

ONDES ET IMAGES

Revisiting « blackbody radiation » spectra in the near-field.

Near-field spectroscopy with the TRSTM

Jean-Jacques Greffet

NSTITUT

Pierre-Olivier Chapuis Arthur Babuty

["] Babuty, Joulain, Chapuis, Greffet, De Wilde, Phys. Rev. Lett. 110, 146103 (2013).

[~] Joulain, Ben-Abdallah, Chapuis, Babuty, De Wilde, arXiv:1201.4834.

Spatial coherence of thermal emission in the near-field of SiC

Antenna like emission pattern

Greffet, Carminati, Joulain, Mulet, Mainguy, Chen, Nature 416, 61 (2002)

DIFFRACTION

SPATIAL COHERENCE OF THERMAL EMISSION !!!

What about the temporal coherence ?

Nanoscale Radiative Heat Transfer. May 13, 2013

Institut Langevin

ONDES ET IMAGES

Local FTIR spectroscopy probe of nearfield thermal emission

Institut Langevin Nanoscale Radiative Heat Transfer. May 13, 2013

LDOS on SiC : Theoretical predictions

Near-field thermal emission on SiC

Babuty, Joulain, Chapuis, Greffet, De Wilde, Phys. Rev. Lett. 110, 146103 (2013).

Institut Langevin Nanoscale Radiative Heat Transfer. May 13, 2013

Test of near-field origin of the signal

Babuty, Joulain, Chapuis, Greffet, De Wilde, Phys. Rev. Lett. 110, 146103 (2013).

Institut Langevin Nanoscale Radiative Heat Transfer. May 13, 2013

SiC: Theoretical modelling vs. experiment

SiO₂: Theory modelling vs. experiment

Good agreement with experiments (R_{tip} =1.6 µm)

Babuty, Joulain, Chapuis, Greffet, De Wilde, Phys. Rev. Lett. 110, 146103 (2013). Joulain, Ben-Abdallah, Chapuis, Babuty, De Wilde, arXiv:1201.4834.

Institut Langevin Nanoscale Radiative Heat Transfer. May 13, 2013

TRSTM spectroscopy with a heated tip (Markus B. Raschke group)

Jones, Raschke, Nanoletters 12, 1475 (2012).

Mapping the EM-LDOS in the visible

+ Romain Pierrat, Alexandre Cazé, Etienne Castanié

CONCLUSIONS

Infrared-NSOM based on home-built system for subwavelength imaging of materials and investigations of plasmonic devices.

The set-up can operate without any external source in the « TRSTM mode », allowing the detection of thermal emission in the near-field.

TRSTM images and FTIR spectra have been obtained. They probe the spatial and frequency dependence of the EM-LDOS (see Karl Joulaincs talk this afternoon).

TRSTM spectra have revealed the temporal coherence of the near-field thermal emission in SiC and SiO2.

THANK YOU!

Near-Field thermal emission: Laboratoire Charles Fabry, Inst. d@ptique J.-J. Greffet, P. Ben Abdallah Institut Pq K. Joulain Centre dEtudes Thermiques de Lyon P.-O. Chapuis Institut d'Electronique du Sud T. Taliercio, V. Ntsame Guilengui Labo. Nanotechnologies Nanosystèmes Ali Belarouci CRHEA-CNRS Yvon Cordier, Adrien Michon SPPs active devices: Institut de lectronique Fondamentale R. Colombelli, D. Costantini, A. Bousseksou

III-V Lab A. Accard, J. Decobert, G-H. Duan

Laboratoire Photonique et Nanostructures G. Beaudoin, I. Sagnes,

Institut Langevin A. Babuty, L. Greusard, F. Peragut

Institut Langevin: A. Babuty, F. Peragut, L. Greusard, V. Krachmalnicoff, R. Carminati,

D. Cao, A. Cazé, R. Pierrat, E. Castanié (+ LPN: S. Collin, N. Bardou)

