Thermal radiation scanning tunnelling microscope (TRSTM):
Near-field imaging and spectroscopy probe of the thermal emission

Yannick De Wilde
Institut Langevin, CNRS, ESPCI ParisTech, Paris
yannick.dewilde@espci.fr

Institut Langevin

ONDES ET IMAGES

Nanoscale Radiative Heat TransferñMay 13, 2013

Motivation : Theoretical predictions

Motivation : Far-field measurements

90

Antenna like emission pattern
Greffet, Carminati, Joulain, Mulet, Mainguy, Chen, Nature 416, 61 (2002)

DIFFRACTION $\quad \underset{\text { SPATIAL COHERENCE OF THERMAL EMISSION !!! }}{ }$

Probe of thermal emission

 in the near-field

LDOS
Photon statistics
(Bose Einstein distribution)

OUTLINE

> Infrared-NSOM \& Thermal radiation scanning tunnelling (TRSTM) setup.
> Examples using laser sources.
$>$ TRSTM for imaging thermal radiation in the near-field.
$>$ TRSTM for spectroscopy measurements.

Optical near-field :definition

Applications of near-field probes

NANOMATERIALS

> Optical imaging of nano-materials
> (resolution $\ll \lambda$)

CONFINED FIELDS

Detection of purely evanescent fields (example: surface plasmons)

Aperture NSOM

Veerman et al. ,
Appl. Phys. Lett. 72, 3115 (1998)

NSOM= near-field scanning optical microscope

Aperture NSOM

Veerman et al. ,
Appl. Phys. Lett. 72, 3115 (1998)
Silica fiber : Well-suited for visible and near-IR but not for the mid-IR !!!

Tip approach in an evanescent field.

$$
I_{\operatorname{scat}}\left(x_{t}, y_{t}\right)=\sigma\left|\vec{H}\left(x_{t}, y_{t}\right)\right|^{2}
$$

s-NSOM for mid-infrared detection of near-field thermal emission

Thermal radiation scanning tunnelling microscope « TRSTM »

scanning PZT
IMAGING De Wilde, Formanek, Carminati, Gralak, Lemoine, Mulet, Joulain, Chen, Greffet, Nature 444, 740 (2006) SPECTROSCOPY Babuty,, Joulain, Chapuis, Greffet, De Wilde, Phys. Rev. Lett. 110, 146103 (2013).

Mid IR s-NSOM ñ TRSTM: Tip preparation

Tungsten wire

Electrochemical etching

Mid IR s-NSOM ñ TRSTM: Tip gluing

SEM Image

De Wilde, Formanek, Aigouy,
Rev. Sci. Instrum. 74, 3889 (2003)

Mid IR s-NSOM ñ TRSTM: Cassegrain objective

Two gold spherical mirrors:

- Broad spectral range (UV, Vis, IR, THz)
- No chromatic aberrations

Magnification $=x 36$
Numerical aperture $=0.5$

Mid IR s-NSOM ñ TRSTM: HgCdTe detector

> Liquid N_{2} cooled
> Size: $\mathrm{d}=0.5 \mathrm{~mm}\left(510^{-2} \mathrm{~cm}\right)$

Detectivity: $D^{*} \approx 410^{10} \mathrm{~cm} \mathrm{~Hz}^{1 / 2} \mathrm{~W}^{-1}$

$$
\text { (>50\% between } \lambda \approx 7 \mu \mathrm{~m}-12 \mu \mathrm{~m} \text {) }
$$

$$
\text { Noise }=\frac{d}{D^{*}} \approx 10^{-12} \mathrm{~W} / H z^{1 / 2}
$$

Super-resolution with external source: Imaging of nano-materials

Formanek, De Wilde, Aigouy,
J. Appl. Phys. 93, 9548 (2003)

Holes sub- λ ($\phi=200 \mathrm{~nm}$) : SiO_{2}

Chromium

Optical resolution
~ 30-50nm
~ $\lambda / 200$

NSOM $(3 \mu \mathrm{~m} \times 3 \mu \mathrm{~m})$ $\lambda=10.6 \mu \mathrm{~m}$

Diffraction limit
Nanoscale Radiative Heat TransferñMay 13, 2013

Building block of active plasmonics: Slit doublet experiment

Building block of active plasmonics: Slit doublet experiment

Measured
topography
(AFM)

Measured near-field
λ å7.5 $\mu \mathrm{m}$

Interference of counterpropagating SPPs generated by electrical pumping of a QC laser.

Collaboration: R. Colombellic̈ group, IEF
Babuty, et al., Phys. Rev. Lett., 104, 226806, (2010)
(

Remark 1: Far field background issue

Laser beam

Nanoscale Radiative Heat TransferñMay 13, 2013
(Nirs): *

Extracting the near-field contribution in the detector signal.

Tip-Scattered intensity in a plan perpendicular to metal surface.

Bousseksou, Babuty, Tetienne, Moldovan, Braive, Beaudoin, Sagnes,
De Wilde, Colombelli, Optics Express 20, 13738 (2012).

Extracting the near-field contribution in the detector signal.

Lock-in demodulation

Bousseksou, Babuty, Tetienne, Moldovan, Braive, Beaudoin, Sagnes,
De Wilde, Colombelli, Optics Express 20, 13738 (2012).

Infrared apertureless SNOM with laser source

Formanek, De Wilde, Aigouy, J. Appl. Phys. 93, 9548 (2003)
1P Nanoscale Radiative Heat TransferñMay 13, 2013 Cnrs

Remark 2: Tip illumination conditions

$$
S(\omega)=\sigma_{\text {eff. }}\left(\varepsilon_{\text {tip }}, \varepsilon_{\text {sample }}, r_{\text {tip }}\right)\left|E\left(r_{\text {tip }}\right)\right|^{2}
$$

Nanoscale Radiative Heat TransferñMay 13, 2013

Thermal Radiation STM: New paradigm

scanning PZT

$$
\left.\left|E\left(r_{\text {tip }}, \omega\right)\right|^{2}=\underline{\rho\left(r_{\text {tip }}, \omega\right)} \hbar \omega \frac{1}{\exp (\hbar \omega / k T)-1} \right\rvert\,
$$

The EM-LDOS $\rho\left(\mathbf{r}_{\text {tip }}, \omega\right)$ can be probed with the TRSTM.

Jean-Jacques Greffet

Near-field imaging with the TRSTM

Experiments:
F. Formanek (ex-PhD,ESPCI)

Karl

Joulain

\AA De Wilde, Formanek, Carminati, Gralak, Lemoine, Mulet, Joulain, Chen, Greffet, Nature 444, 740 (2006).

ÅShchegrov, Joulain, Carminati, Greffet,
Phys. Rev. Lett., 85, 1548 (2000).
ÅJoulain, Carminati, Mulet, Greffet, PRB 68, 245405 (2003).

TRSTM Images of pattern of Au on SiC

Hot plate
Topography (AFM)

$5 \mu \mathrm{~m}$
SiC

Resolution ~ 100 nm

TRSTM signal ~ 20 pW

IR-SNOM signal 10^{3}

Energy selection : TRSTM imanes with filter at $\lambda=10,9 \mathrm{um}$

FRINGES

$$
=
$$

Thermally excited surface plasmon modes in a planar cavity

Images TRSTM vs. EM-LDOS

Higher harmonic demodulation

TRSTM image at 2Ω Filter at $10.9 \mu \mathrm{~m}$ (width $1 \mu \mathrm{~m}$)

SiC = Polar material with surface : phonon polaritons.

V. Shchegrov, K. Joulain, R. Carminati, J-J. Greffet, Phys.Rev.Lett. 85, 1548(2000)

ÅNear-field energy density peaked at $10.55 \mu \mathrm{~m}$.
ÅLarge $\mathrm{k}_{\varepsilon}=>$ higher confinement

Revisiting « blackbody radiation » spectre in the near-field.

Near-field spectroscopy with the TRSTM

$d \ll \lambda_{\text {emission }}$
ÅBabuty, Joulain, Chapuis, Greffet, De Wilde, Phys. Rev. Lett. 110, 146103 (2013).

ÅJoulain, Ben-Abdallah, Chapuis, Babuty, De Wilde, arXiv:1201.4834.

Spatial coherence of thermal emission in the near-field of SiC

90

Antenna like emission pattern
Greffet, Carminati, Joulain, Mulet, Mainguy, Chen, Nature 416, 61 (2002)

DIFFRACTION \quad SPATIAL COHERENCE OF THERMAL EMISSION !!!

Nanoscale Radiative Heat TransferñMay 13, 2013
Ons

What about the temporal coherence ?

Local FTIR spectroscopy probe of nearfield thermal emission

LDOS on SiC : Theoretical predictions

Shchegrov, Joulain, Carminati, Greffet, Phys. Rev. Lett., 85, 1548 (2000)

Near-field thermal emission on SiC

Babuty, Joulain, Chapuis, Greffet, De Wilde, Phys. Rev. Lett. 110, 146103 (2013).

Test of near-field origin of the signal

Peak present at $1 \Omega_{\text {tip }}$ and $2 \Omega_{\text {tip }}$
Babuty, Joulain, Chapuis, Greffet, De Wilde, Phys. Rev. Lett. 110, 146103 (2013).

SiC : Experiment vs. LDOS

$$
S(\omega)=\sigma_{\text {eff }}\left(\varepsilon_{\text {tip }}, \varepsilon_{\text {sample }}, r_{\text {tip }}\right)\left|E\left(r_{\text {tip }}\right)\right|^{2}
$$

$\left|\mathrm{E}\left(\mathrm{r}_{\text {tip }}\right)\right|^{2} \propto \mathrm{EM}$-LDOS

See Karl Joulainલ̂ Talk at 2 pm .

Joulain, Ben-Abdallah, Chapuis, Babuty, De Wilde, arXiv:1201.4834.

SiC: Theoretical modelling vs. experiment

SiO_{2} : Theory modelling vs. experiment

SiO_{2}

Good agreement with experiments $\left(\mathrm{R}_{\text {tip }}=1.6 \mu \mathrm{~m}\right)$
Babuty, Joulain, Chapuis, Greffet, De Wilde, Phys. Rev. Lett. 110, 146103 (2013).
Joulain, Ben-Abdallah, Chapuis, Babuty, De Wilde, arXiv:1201.4834.

TRSTM spectroscopy with a heated tip (Markus B. Raschke group)

Jones, Raschke, Nanoletters 12, 1475 (2012).

Mapping the EM-LDOS in the visible

CONCLUSIONS

Infrared-NSOM based on home-built system for subwavelength imaging of materials and investigations of plasmonic devices.

The set-up can operate without any external source in the « TRSTM mode », allowing the detection of thermal emission in the near-field.

TRSTM images and FTIR spectra have been obtained. They probe the spatial and frequency dependence of the EM-LDOS (see Karl Joulain $\hat{心}$ talk this afternoon).

TRSTM spectra have revealed the temporal coherence of the near-field thermal emission in SiC and SiO 2 .

THANK YOU!

Near-Field thermal emission:
Laboratoire Charles Fabry, Inst. d®ptique
J.-J. Greffet, P. Ben Abdallah

Institut Pô
K. Joulain

Centre dZ̈Ztudes Thermiques de Lyon
P.-O. Chapuis

Institut d'Electronique du Sud
T. Taliercio, V. Ntsame Guilengui

Labo. Nanotechnologies Nanosystèmes
Ali Belarouci
CRHEA-CNRS
Yvon Cordier, Adrien Michon

SPPs active devices:
Institut dếlectronique Fondamentale
R. Colombelli, D. Costantini, A. Bousseksou

III-V Lab
A. Accard,J. Decobert, G-H. Duan

Laboratoire Photonique et Nanostructures
G. Beaudoin, I. Sagnes,

Institut Langevin
A. Babuty, L. Greusard, F. Peragut

Institut Langevin: A. Babuty, F. Peragut, L. Greusard, V. Krachmalnicoff, R. Carminati,
D. Cao, A. Cazé, R. Pierrat, E. Castanié (+ LPN: S. Collin, N. Bardou)

