Near-field heat transfer and thermal emission control with complex plasmonic systems

Philippe Ben-Abdallah

Laboratoire Charles Fabry, CNRS, Institut d’Optique, Palaiseau, France

pba@institutoptique.fr

Collaborations

R. Messina
M. Langlais
M. Besbes
J.P. Hugonin

S.A. Biehs
(K. Joulain
M. Antezza
C. Henkel
(Oldenburg, Germany)
(Institut P’, Poitiers, France)
(Montpellier 2, France)
(Potsdam, Germany)
Fluctuating and uncorrelated local sources lead to:

- energy and momentum exchange

These exchanges are well described by the fluctuational electrodynamic theory (Rytov) applied to:

- Radiative heat transfer (Polder and Van Hove)
- Casimir force (Lifschitz)
Open questions

- How does the heat and momentum transport for a collection of individual objects in mutual interaction look like?
- Are there specific many body effects?
- What relation between disorder and heat transport? etc…

Needs a N-body heat and momentum transfer theory
I) Engineering the light absorption spectrum from multiple scattering interactions in dipolar systems

II) Near-field heat transfer in many body systems: dipolar approximation

III) Many body heat transfer beyond the dipolar approximation
Engineering light absorption from multiple scattering interactions: absorption by a simple particle

Rate of doing work by the em field in a volume \(V \):

\[
\varphi(\omega) = \frac{1}{2} \int V \text{Re}(j^*E) dV
\]

Poynting theorem (energy conservation):

\[
\frac{1}{2} \int_V j^*E dV = -\frac{1}{2} \int_V \nabla \cdot [E \times H^*] dV + i \frac{\omega}{2} \int_V (\mu_h |H|^2 - \varepsilon_h |E|^2) dV
\]

In a transparent host medium

\[
\varphi(\omega) = -\frac{1}{2} \int_S \text{Re}[E \times H^* \cdot n] dS
\]

Poynting flux

Also we have

\[
E(r) = E^{\text{ext}} + i \omega \mu_0 \int_V \overrightarrow{G}_0(r, r') j(r') dr' + j(r) &= -i \omega p \delta(r)
\]

Thus

\[
\varphi(\omega) = -\frac{\omega}{2} \text{Im}[p^* E^{\text{inc}}(0)] - \frac{\omega^3 |p|^2}{2} \frac{\mu_0}{t} \text{Im}[\overrightarrow{G}_0(0,0)].t
\]
Engineering light absorption from multiple scattering interactions: absorption by a set of particles

![Diagram of light absorption](image)

External field on the particle i: $E_{i}^{ext} = E_{i}^{inc} + \omega^2 \mu_0 \sum_{j \neq i} \vec{G}_0(r_i, r_j) p_j$

Thus

$$\omega_i(\omega) = -\frac{\omega}{2} \text{Im}[p_i^* E_{i}^{inc}] - \frac{\omega^3 \mu_0}{2} |p_i|^2 \vec{t}_i . \vec{G}_0(r_i, r_i) \vec{t}_i - \frac{\omega^3 \mu_0}{2} \text{Im}[p_i^* \sum_{j \neq i} \vec{G}_0(r_i, r_j) . p_j]$$

Multiple interactions
Engineering light absorption: dressed absorption in dipolar chains

Au, 20 nm radius

\[n_b = 1.5 \]

\[\frac{\sigma}{\sigma_{\text{inc}}} \]
Engineering light absorption: design of an absorber

Find the optimal distribution of dipoles to get an absorption spectrum target

\[E_i^{\text{ext}} = E_i^{\text{inc}} + \omega^2 \mu_0 \sum_{j \neq i} \vec{G}(r_i, r_j) p_j + \Delta \vec{G}(r_i, r_i) p_i \]

\[\phi_i(\omega) = -\frac{\omega}{2} \text{Im}[p_i^* E_i^{\text{ext}}] - \frac{\omega^3 \mu_0}{2} p_i^* \text{Im}[\vec{G}_0(r_i, r_i)] p_i \]

\[a = 1 - T - R \equiv \frac{\sum \phi_i}{A \Phi_{\text{inc}}} \]

\[\Delta G \equiv G - G_0 \]
Find the position and the size of particles in the unit cell of a n-ary lattice so that:

\[\int_{\lambda_{\text{min}}}^{\lambda_{\text{max}}} a(\lambda) d\lambda \rightarrow \text{max} \]

Evolutionary algorithm:

- Random generation
- Selection of best structures
- Crossing over
- New generation
- Mutation
Engineering light absorption: design of an absorber

Au-Ag lattice

dipolar approximation

Langlais, Besbes, Hugonin, Ben-Abdallah, submitted
Engineering light absorption: design of an absorber

Au-Ag lattice

Multipolar calculation

Langlais, Besbes, Hugonin, Ben-Abdallah, submitted
Engineering light absorption: design of an absorber

Au-Ag lattice

Effective medium theory

Langlais, Besbes, Hugonin, Ben-Abdallah, submitted
Outline

- I) Engineering the light absorption spectrum from multiple scattering interactions in dipolar systems

- II) Near-field heat transfer in many body systems: dipolar approximation

- III) Many body heat transfer beyond the dipolar approximation
Near-field heat transfer in many body systems: dipolar approximation

- \(d_i < \min(\lambda_{T_j}) \) with \(\lambda_{T_j} = \frac{\hbar}{k_B T_j} \)
- Objects exchange in far field with the bath
- \(N \) fluctuating dipoles in mutual interaction inside a bosonic field

Local field

\[
E(r) = E_b(r) + \omega^2 \mu_0 \sum_j \tilde{G}_0(r,r_j) p_j
\]

Dipole moments

\[
p_i = p_i^{\text{fluc}} + p_i^{\text{ind}} \quad \text{with} \quad p_i^{\text{ind}} = \varepsilon_0 \alpha_i [E_{b,i} + \sum_{j \neq i} \tilde{G}_0(r_i,r_j) p_j]
\]

\[
\begin{pmatrix}
 p_1 \\
 \vdots \\
 p_N
\end{pmatrix} =
\begin{pmatrix}
 p_1^{\text{fluc}} \\
 \vdots \\
 p_N^{\text{fluc}}
\end{pmatrix} +
\begin{pmatrix}
 E_1 \\
 \vdots \\
 E_N
\end{pmatrix} =
\begin{pmatrix}
 p_1^{\text{fluc}} \\
 \vdots \\
 p_N^{\text{fluc}}
\end{pmatrix} +
\begin{pmatrix}
 E_1 \\
 \vdots \\
 E_N
\end{pmatrix}
\]

where \(M, N, O, P \) are function of \(\tilde{G}_0(r_i,r_j), \alpha_1, ..., \alpha_N \)
Energy balance

Time evolution of temperatures is governed by:

$$\rho_i C_i V_i \frac{dT_i}{dt} = \varphi_i(t, T_1, ..., T_N, T_b)$$

with

$$\varphi_i = \int \langle j_i E \rangle dV_i \approx \left\langle \frac{d\vec{p}_i}{dt}, E \right\rangle$$ (dipolar approximation)

Using the convention

$$\vec{p}_i(t) = 2 \text{Re} \left(\int_0^\infty p_i(\omega) \frac{e^{-i\omega t}}{2\pi} d\omega \right)$$

$$\varphi_i = \int_0^\infty \frac{d\omega}{2\pi} \int_0^\infty \frac{d\omega'}{2\pi} \text{Im} \left(p_i(\omega) E_{i}^\dagger (\omega') \right) e^{-i(\omega-\omega')t}$$

Assuming no correlation between the fluctuating dipole moments and the field of bath

$$\left\langle p_i(\omega) E_{i}^\dagger (\omega') \right\rangle = \sum_\alpha \sum_{jj'} \sum_{\beta\beta'} M_{ij,\alpha\beta} \left\langle p_{j,\beta}^{\text{fluc}} (\omega) p_{j',\beta'}^{\text{fluc}} (\omega') \right\rangle O_{j',i,\beta'\alpha}^\dagger + N_{ij,\alpha\beta} \left\langle E_{j,\beta}^b (\omega) E_{j',\beta'}^b (\omega') \right\rangle P_{j',i,\beta'\alpha}^\dagger$$
Energy balance

Using the FDT:

$$\langle p_{j,\beta}(\omega) p_{j',\beta'}^{\dagger}(\omega') \rangle = 2\pi \hbar \varepsilon_0 \delta_{jj'} \delta_{\beta\beta'} \chi_j \delta(\omega - \omega')(1 + 2n(\omega, T_j)) \quad \text{with} \quad \chi_j = \text{Im}(\alpha_j) - \frac{\omega^3}{6\pi c^3} |\alpha_j|^2$$

$$\langle E_{j,\beta}(\omega) E_{j',\beta'}^{\dagger}(\omega') \rangle = 2\pi \hbar \frac{\omega^2}{\varepsilon_0 c^2} \text{Im}(\tilde{G}_{0,ji',\beta\beta'}) \delta(\omega - \omega')(1 + 2n(\omega, T_b))$$

$$\langle p_i(\omega) E_i^{\dagger}(\omega') \rangle = 2\pi \delta(\omega - \omega')$$

$$\times \left[\hbar \varepsilon_0 \sum_j \chi_j (1 + 2n(\omega, T_j)) \text{Tr}(M_{ij} O_{ji}^{\dagger}) + \frac{\hbar \omega^2}{\varepsilon_0 c^2} (1 + 2n(\omega, T_b)) \text{Tr}(N \text{Im}(\tilde{G}_0) P_{ii}^{\dagger}) \right]$$

By considering exchanges with other dipoles, the thermal bath and emission:

$$\varrho_i = \sum_{j \neq i} \varrho_{j \rightarrow i} + \varrho_{b \rightarrow i} - \varrho_{i}^{\text{emi}}$$

with

$$\varrho_{j \rightarrow i} = 3 \int_0^\infty \frac{d\omega}{2\pi} \hbar \omega n(\omega, T_j) \tau_{ij}(\omega) \quad \tau_{ij}(\omega) = \frac{4}{3} \left(\frac{\omega}{c} \right)^4 \chi_i \chi_j \text{Tr}[\tilde{G}(r_i, r_j) \tilde{G}^{\dagger}(r_i, r_j)]$$

Ben-Abdallah, Biehs, Joulain, PRL, 107, 114301 (2011); Messina, Ben-Abdallah, submitted
Landauer-like formulation of heat transport

Introducing the heat conductance between two objects

\[G_{ij} = \frac{\partial P_{j \to i}}{\partial T_j} \quad \text{(Linearization of exchanged power)} \]

\[\phi_{j \to i} = G_{ij} \Delta T = 3 \left(\frac{\pi^2 k_B^2 T_i^4}{3h} \right) \tau_{ij} \Delta T \]

(Pendry, Math. Gen., 1983
Schwab, Nature 2000)

Mean transmission coefficient

\[\tau_{i,j} = \frac{3}{\pi^2} \int \frac{dx}{(e^x - 1)^2} T_{i,j} \]

3 channels for heat exchanges
Many body effects in N body systems

\[\psi_{12}(x_3, y_3) \]

\[T_1 = 300 \text{ K} \]
\[T_2 = 0 \text{ K} \]
\[T_3 = 0 \text{ K} \]

SiC particles
R = 100 nm

Ben-Abdallah, Biehs, Joulain, PRL, 107, 114301 (2011)
Many body effects in N body systems

\[2l\]

\[\varepsilon(\omega_{SR}) = -2\]

\[\tau_{i,j}^{(N)}(\omega) = \frac{4}{3} k_0^2 Im \alpha tr[G_N G_N^+]\]

\[N=2\]

\[\tau_{i,j}^{(2)}(\omega_{SR}, l = 3R) = 0.12\]

\[N=3\]

\[\tau_{i,j}^{(3)}(\omega_{SR}, l = 3R) = 0.3\]

More efficient coupling at longer separation distances with a third particle
Heat transport regimes in plasmonic networks

How heat propagates throughout the network?

\[
\rho_i C_i V_i \frac{dT_i}{dt} = \sum_j G(|r_i - r_j|)(T_j - T_i) + \bar{C}_{abs,i} \sigma(T_b^4 - T_i^4) \approx \sum_j G(|r_i - r_j|)(T_j - T_i)
\]

\(\bar{C}_{abs,i}\) thermal average dressed absorption

Yannopapas, Vitanov, PRL. 110, 044302, 2013
Heat transport regimes in plasmonic networks

Remarking that \(\varphi_{j \to i} = G(|r_i - r_j|)(T_j - T_i) \) is formally an Ohm’s law

\[
\langle G(x) \rangle \propto x^{-\gamma}
\]

N=250 realizations generated with uniform distribution

\[
\langle G \rangle = \frac{1}{N} \sum_{i=1}^{N} G^{(i)}
\]

\[
\rho_i C_i V_i \frac{\partial T_i}{\partial t} = -\sum_j \frac{\Gamma_{d,\alpha}^{d+\alpha}}{|r_i - r_j|^{d+\alpha}} (T_i - T_j) \approx \beta_i \Delta^{\alpha/2} T_i \quad \text{(Fractional diffusion equation)}
\]

\[
\alpha(f = 0.2) \approx 0.6 \quad \text{superdiffusion}
\]
I) Engineering the light absorption spectrum from multiple scattering interactions in dipolar systems

II) Near-field heat transfer in many body systems: dipolar approximation

III) Many body heat transfer beyond the dipolar approximation
Many body heat transfer: beyond the dipolar approximation

From the scattering matrix theory:

\[E_B^+ = E_1^+ + t_1 E_b^+ + r_1 E_B^- \]
\[E_B^- = E_2^- + t_2 E_b^- + r_2 E_B^+ \]

\(t_i, r_i \) partial transmission and reflection etc…

Normal component of Poynting vector:

\[\langle S \rangle . e_z = \langle E \times H \rangle . e_z = \sum_p \int \frac{d^2 k}{(2\pi)^2} \int_0^{\infty} \frac{d\omega}{2\pi} F_p(k, \omega) \langle E_p(k, \omega), E_p(k, \omega) \rangle \]
Heat transfer in a three slab system

Monochromatic heat flux on semi-infinite medium (3) decomposes into:

\[\varphi_3(\omega, d, \delta) = \varphi_3^{(12)}(\omega, d, \delta) + \varphi_3^{(23)}(\omega, d, \delta) \]

where

\[\varphi_3^{(12)} = \hbar \omega \sum_p \int \frac{d^2k}{(2\pi)^2} \left[n(\omega, T_1) - n(\omega, T_2) \right] \tau_p^{(12)}(\omega, k, d, \delta) \]

\[\varphi_3^{(23)} = \hbar \omega \sum_p \int \frac{d^2k}{(2\pi)^2} \left[n(\omega, T_2) - n(\omega, T_3) \right] \tau_p^{(23)}(\omega, k, d, \delta) \]

\[\tau_p^{(23)} = \frac{4 \text{Im}(\rho_{12,p}(\delta)) \text{Im}(\rho_{3,p}) e^{-2\text{Im}(k_z)d}}{\left| 1 - \rho_{12,p}(\delta) \rho_{3,p} e^{-2\text{Im}(k_z)d} \right|^2} \]

\[\tau_p^{(12)} = \frac{4 |\sigma_{2,p}(\delta)|^2 \text{Im}(\rho_{1,p}) \text{Im}(\rho_{3,p}) e^{-4\text{Im}(k_z)d}}{\left| 1 - \rho_{12,p}(\delta) \rho_{3,p} e^{-2\text{Im}(k_z)d} \right|^2 \left| 1 - \rho_{1,p} \rho_{2,p}(\delta) e^{-2\text{Im}(k_z)d} \right|^2} \]

Messina, Antezza, Ben-Abdallah, PRL, 109, 244302 (2012)
Temperature of the intermediate layer

At thermal steady state: \(\varphi_1 + \varphi_2 + \varphi_3 = 0 \)

\[\varphi_2 = -(\varphi_1 + \varphi_3) = -\hbar \omega \sum_p \int \frac{d^2k}{(2\pi)^2} \left\{ [n_{12} + n_{32}] \tau_p^{12} + [n_{23} + n_{21}] \tau_p^{23} \right\} \]

Symmetrical geometric configuration

\[= \hbar \omega [2n(T_2) - n(T_1) - n(T_3)] \sum_p \int \frac{d^2k}{(2\pi)^2} (\tau_p^{12} - \tau_p^{23}) \]

For a quasi-monochromatic heat flux spectrum around \(\omega = \omega^* \)

\[\int \varphi_2 d\omega \approx \hbar \omega^* \Delta \omega [2n(\omega^*, T_2) - n(\omega^*, T_1) - n(\omega^*, T_3)] \sum_p \int \frac{d^2k}{(2\pi)^2} (\tau_p^{12} - \tau_p^{23}) = 0 \]

\[2n(\omega^*, T_2) - n(\omega^*, T_1) - n(\omega^*, T_3) = 0 \]

Messina, Antezza, Ben-Abdallah, PRL, 109, 244302 (2012)
Heat flux amplification

\[\varepsilon_2 = 1 - \frac{\omega_p^2}{\omega(\omega + i\gamma)} \quad \text{(Drude)} \]

Surface plasmon at:

\[\omega^* \approx \omega_p / \sqrt{2} \quad \text{with} \quad \omega_p = \sqrt{2} \omega_{SPP_{SiC}} \]

\[\omega_{SPP_{SiC}} = 1.787 \times 10^{14} \text{ rad.s}^{-1} \]

\[T_1 = 400\text{K}; \quad T_3 = 300\text{K} \]

Messina, Antezza, Ben-Abdallah, PRL, 109, 244302 (2012)
Origin of amplification mechanism

Flux spectrum for different values of d at the optimal value of δ:

3 body heat flux is enhanced at ω_{SPP}

The presence of intermediate slab does not enhance flux at smaller frequencies (quasi-monochromatic enhancement)

Messina, Antezza, Ben-Abdallah, PRL, 109, 244302 (2012)
Transmission probability in a SiC-Drude-SiC system

Quasimonochromaticity of transfer \(n_{12}(\omega_{SPP}) = n_{23}(\omega_{SPP}) = \frac{n_{13}(\omega_{SPP})}{2} \)

Thus

\[
\phi_3(\omega_{SPP}) = n_{12}\hbar\omega \sum_p \int \frac{d^2k}{(2\pi)^2} [\tau_{3,p}^{(12)} + \tau_{3,p}^{(23)}]
\]

\[
\phi_2(\omega_{SPP}) = n_{13}\hbar\omega \sum_p \int \frac{d^2k}{(2\pi)^2} \tau_{2,p} = 2n_{12}\hbar\omega \sum_p \int \frac{d^2k}{(2\pi)^2} \tau_{2,p}
\]

To compare the coupling efficiency between modes in 2 and 3 body configurations we must compare \(\tau_2 \) with \(\tau_3 = (\tau_{3}^{(12)} + \tau_{3}^{(23)}) / 2 \)
Transmission probability: asymptotic regimes

Compared to 2 body, the shift of the cut off wavevector k_c comes from the difference of distance from d to $2d$.
Transmission probability: asymptotic regimes

\[k_c \propto \frac{1}{\sqrt{\text{Im}\varepsilon_{\text{Drude}} \text{Im}\varepsilon_{\text{SiC}}}} \quad \text{and} \quad \text{Im}\varepsilon_{\text{Drude}} \prec \text{Im}\varepsilon_{\text{SiC}} \]

Compared to 2 body SiC-SiC, the cut off wavenumber \(k_c \) is shifted toward larger values.

\(\delta \gg d \)

(\(\tau_3 \) does not depend on \(\delta \))

\[\varphi_3 < \varphi_2 \quad \text{because} \quad T_2 < T_1 \]
Transmission probability: three body regime

3 body interactions take place

III) $\delta \sim d$
Transmission probability: three body regime

\[\tau_p^{(23)} = \frac{4 \text{Im}(\rho_{12,p}(\delta)) \text{Im}(\rho_{3,p}) e^{-2 \text{Im}(k_z)d}}{|1 - \rho_{12,p}(\delta) \rho_{3,p} e^{-2 \text{Im}(k_z)d}|^2} \]

\[\tau_p^{(12)} = \frac{4|t_{2,p}(\delta)|^2 \text{Im}(\rho_{1,p}) \text{Im}(\rho_{3,p}) e^{-4 \text{Im}(k_z)d}}{|1 - \rho_{12,p}(\delta) \rho_{3,p} e^{-2 \text{Im}(k_z)d}|^2 |1 - \rho_{1,p} \rho_{2,p}(\delta) e^{-2 \text{Im}(k_z)d}|^2} \]

2 body exchange between the couple (1,2) at temperature T_2 and (3)

purely 3 body effect

Messina, Antezza, Ben-Abdallah, PRL, 109, 244302 (2012)
The 3 body amplification of photon tunneling result from a shifting of the cutoff wavector toward higher values thanks to the presence passive relay

Messina, Antezza, Ben-Abdallah, PRL, 109, 244302 (2012)
Application: graphene-based PV cell for near-field energy conversion

Concluding remarks

- Dipolar (multipolar) interactions in N-body systems can be used to enhance and to tailor the absorption spectrum

- Revisited the fluctuationnal electrodynamics in multiple dipolar systems

- Highlighted N-body near-field properties
 - enhancing or inhibiting heat exchanges
 - export the near-field effects at longer separation distances
 - existence of anomalous heat transport regimes

- Applications: NTPV, thermal management at nanoscale

- Still open questions:
 - role of localized modes in the heat transport in disordered plasmonic systems
 - transport in N-body systems at mesoscopic scale
 - dynamic of cooling/heating

...