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MOTIVATION: SELECTIVE
EMITTERS FOR TPV
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Recent developments
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Selective thermal emitters |
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Stabllity at high temperatures
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Selective thermal emitters |l
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Selective thermal emitters Il
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Why not 3D PC on Silicon?

We can cover with metal later. (Silicon template)+ ALD

Conventional microelectronic oxidation 800°C-1200°C.

Electrochemical dissolution of Si. > Macroporous
Silicon allows the fabrication of 3 D PC.

Experience in the group.



Electrochemical etching of Silicon/1
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Electrochemical etching of Silicon/1
1- thhography 2 Electrochemlcal etchln

3- Control: current, voltage, light, temperature, Iifetime,
bubbles ...
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3D macroporous Silicon

In the electrochemical etching process, the pore diameter is solely determined
by the applied etching current, which itself is adjusted by controlling the
intensity of backside illumination. Periodic variations of pore diameter in depth
can be achieved by modulating the light intensity. The etching current profiles
can be properly designed to obtain structures with different shape.
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T.Trifonov et al.
Sensors and Actuators A (2008)
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3D macroporous Silicon

After few multiple oxidation/oxide-stripping cycles, adjacent pores become
interconnected because the pore walls erode at the positions of diameter is
maximum. The opened windows between the pores have circular or oval shapes.
The formed 3D structure resembles a simple cubic lattice consisting of
overlapping air spheres in silicon.

T. Trifonov et al
SPIE Conference, May, 2007, Spain



3D macroporous Silicon

M. Garin et al APL 2007
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FIG. 3. (Color online) Normalized emittance spectra of 3D macroporous
samples with periodicities along the pore axis of 3, 4, 5, and 6 gm. Black,
red, green, and blue lines stand for the emittance measured at 373, 473, 573,
and 673 K, respectively. Measurements are normalized to the emissivity of

Pg}jsllyed n-type Si.



3D macroporous Silicon

FIG. 1. (Color online) (Top) Computer-generated representation of the pore-
widening process for several oxidation/oxide removal steps, n. The in-plane
periodicity a equals the periodicity /. along the pore axis direction. (Bottom)
SEM of a macroporous sample after 11 oxidation/oxide removal steps. The
inset represents the irreducible Brillouin zone.

M.Garin et al APL 2008
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FIG. 2. (Color online) (a) Map of the main I'-A gaps (green/gray) and OTR
bands (yellow/light gray). (b) Gap width to midgap ratio of the first I-A gap
(solid) and the OTR band (dashed). The symbols represent the edges of the
measured I'-A gaps (circles) and OTR bands (crosses).
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3D from 4->2 um pitch

FI1G. 1. (a) Cross-section image showing the uniformity of the fabricated
structure. (b) Tilted-view showing the square arrangement of the pores. (¢)
Closer-view image showing the pore modulation in depth.

Appl. Phys. Lett. 100, 091901 (2012)



3D, 2 um pitch + widening through
oxidation +etching




3D from 4->2 um pitch + widening
through oxidation +etching
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3D, 2 um pitch + widening through
oxidation +etching
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a) Two widening cycles. b) Six widening cycles.



3D from 4->2 um pitch + widening
through oxidation +etching
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ALD Pt on 3D PC samples.

-Generic problems when introducing metals:
Surface diffusion-> Changing shape.

Eutectics.

- ALD ( Atomic Layer Deposition ) on 3D samples.
conformal deposition.

- Cover Si with SiO2 or may be with Al203 to avoid eutectics.



ALD Pt on 3D PC samples.
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ALD Pt on 3D PC samples.
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Thank you !



