REDUCING THERMAL RADIATION HEAT TRANSFER WITH INTERFERENCES?

Yoichiro Tsurimaki^{1,2*}, P-Olivier Chapuis¹, Rodolphe Vaillon¹, Tatsuya Kobari², Junnosuke Okajima², Atsuki Komiya², Shigenao Maruyama²

CNRS-INSA Lyon-UCBL, Villeurbanne, France **CNTS**² Institute of Fluid Science, Tohoku University,

Sendai, Japan * yoichiro.tsurimaki@insa-lyon.fr

nstitute of Fluid Science Tohoku University

ES

Introduction

Thermal insulation

Thermal insulation is important in terms of social need and fundamental science

Requirement

High insulation performance

Need

Lower energy consumption

Apparatuses used in extreme conditions Thinness work properly

Physical Background medium medium Configuration : Two semi-infinite parallel plates $\varepsilon_1(\omega)$ $\underbrace{\text{Equations}}_{q^{"prop} = \int_{0}^{\infty} d\omega \frac{\Theta(\omega, T_{1}) - \Theta(\omega, T_{3})}{4\pi^{2}} \int_{0}^{k_{0}} k_{\rho} dk_{\rho} \left[\frac{(1 - |r_{12}^{TE}|^{2})(1 - |r_{23}^{TE}|^{2})}{|1 - r_{12}^{TE}r_{23}^{TE}e^{2ik'_{z2}d}|^{2}} + \frac{(1 - |r_{12}^{TM}|^{2})}{|1 - r_{12}^{TM}r_{2}^{TM}r_$ vacuum Interference

- •Metal Metal (AI AI, Au Au)
- Metal Dielectric material (AI cBN)

- Constructive components
 Control of DOS Destructive components
- **Decrease of radiative heat flux**

Evanescent waves appear in this scale

Distance between two plates

Fluxes in the transition regime

Conclusion & Prospects

•We observe a 7.5% decrease of the total flux in the case of AI – AI

•Otherwise, the increase due to the evanescent waves hides the decrease of the propagative component

• A reduction of 85% is observed for the propagative component of the radiative heat flux in the case of AI - AI

•The contribution of evanescent waves seems to become predominant at smaller distances for dielectric materials than for metals

acknowledge We the support from ELyT Lab (Engineering and science Lyon - Tohoku University Laboratory)

Acknowledgement