Quantum phonon transport 1n nanostructures

thermalized by local Langevin heat baths
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thousands of atoms |2 ]

* Phonon transport is typically not fully ballistic .

due to, e€.g., phonon-phonon interactions Couple all atoms to Langevin heat baths, “# P ed ’*“

* Processes creating and annihilating phonons can ‘ which

be mimicked by stochastic heat baths [1] * create phonons by thermal fluctuations “¢’ "\
* Seclf-consistent heat bath model 1s applicable both * absorb phonons by dissipation y
in the ballistic and diffusive regimes of phonon In the leads, bath temperatures are fixed.

transport and 1s suitable for systems containing In the center region, bath temperatures are

Motivation Self-consistent heat bath model
* Nanostructuring can be used to create materials Consider d setup diVid?d to the left lead,
with tailor-made thermal properties center region and the right lead.
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(heat baths shown only for
determined from (@;) =0 (zero net energy exchange). atoms at the edges)
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noise covariance:

Fluctuation-dissipation theorem (FDT) [3] fixes the

FDT and heat current Equations of motion and solution
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Bath coupling  Bath temperature disi)rll:llccemen ‘in Spring constant Coupling matrix Langevin noise and friction,
- matrix ' ion-
function region I=(L,C.R) to region J coupled by fluctuation

Heat current is power:

force times velocity Qout = MU ( ) Qin = U -

Solution in the center region:

dissipation relation

Thermal average of heat current flowing to bath I:
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Center region Green’s function:

Fluctuations from local baths and left and right leads

) +Nr(w)]
7

mission function
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Dissipation from local baths and left and right leads

Solve the non-linear set of equations (Q;) = 0 for the Fluctuations and dissipation by the leads (I=L,R):
bath temperatures 1n the center region X -
= self-consistent bath temperature profile ni (W ) = Vori8i1 (w )SI (W ) 2] (w ) = Vorgr (w )VI C
iction Summar
Constriction in 2D kT /haw, y = 01w, y
. 50 0.2 20f | | 0.2 * Langevin heat baths create and
Model: 2D square lattice annihilate phonons
with nearest neighbor - 10.18 - 10.18 . .
. . 10} 10} * Bath coupling constant determines
spring imnteractions x x :
S 016 T o/ L1016 the phonon relaxation rate
H=% I Zé 0 o O T ;@h ) * In polar materials, heat baths also
Z 21” S 014 é - 10.14 create photons [4]
Z( 7i) gy (u; — uj)” —10; 01 10 11 = fluctuational electrodynamics
| = unified treatment of phonon-
TL = Q'ZaTR = 0.1 —20'_2'0 TR TR —20t . . 0.1 photon heat transfer in nanoscale?
(in units of hw,/kpg) atomic index —20 _matomigindexm 20
Bath friction constant vy is the phonon relaxation rate (ballistic vs. diffusive transport). Reterences
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