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Surface Phonon Polaritons (SPP) Propagation lengths
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Fig. 1 Schematics of the generation and propagation of SPP.

— These surface waves can be applied to improve the thermal performance of nanoscale devices in
clectronics [1].
—> In this work, the thermal conductivity due to the propagation of SPP along a nano thin film and na-

notube of S10; 1s determined analytically.

Thermal Conductivity Model

—> The thin film, tube and their surrounding media are assumed to be nonmagnetic (zo=1).
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Fig. 2 Cross section of the (a) nano thin film and (b) nanotube under consideration.

—> The permittivities of the substrate (KBr) and superstrate (air) are &= 1.24 and &3= 1, respectively.

—> The permittivity &, of the thin film or tube of S10, change with the excitation frequency and 1s
shown 1n Fig. 3.
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Fig. 3 Real and imaginary parts of the permittivity &, = & — i&; of S10, as a function of frequency [2].

— Based on the Boltzmann transport equation and Maxwell equations, the SPP thermal conductivi-
ty 1s given by
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Fig. 4 Propagation length for a (a) nano thin film and (b) nanotube of S10, as a function of frequency.

e propagationof surface phonon-polaritons is present in a broad band of frequencies.

e propagation length 1s larger at the frequency where the absorption of energy 1s minimal.
ne thinner the film or tube, the larger the propagation length.

e first azimuthal mode (n = 1) exhibits the largest propagation length.
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Fig. 5 Poynting vector energy flux for a (a) nano thin film and (b) nanotube of S10,.

— The energy flux 1s negligible 1nside the film or tube, and 1t propagates along the interfaces with the
surrounding media, mainly. THERE ARE SPP!

—> The absorbtion of energy depends on the frequency and it 1s higher in KBr than 1n air.
—> The propagation length increases with the Poynting vector energy flux.
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Fig. 6 SPP thermal conductivity of a (a) nano thin film and (b) nanotube of S10,.

— The SPP thermal conductivity of the film or tube increases as their thickness decreases.

— The SPP thermal conductivity increases with the temperature.

— The SPP thermal conductivity of both the film and tube of S10, can be as high as the bulk phonon
counterpart (1.4 W/m.K).

— A higher SPP thermal conductivity 1s obtained for the asymetric system (&; # &;) than that for the
symmetric one (& = &3).

—> This increase 1s about 100% for a 125 nm-thick thin film at room temperature.

Conclusions

1. The thermal conductivity due to surface phonon-polaritons increases when the material size redu-
ces and the temperature increases.

2. The SPP thermal conductivity 1s significant at nanoscales and becomes negligible at microscales.

3. The propagation of SPP can be analyzed under a fully analytical approach for nano thin films and
nanotubes.

4. A small difference on the permittivities of the surrounding media of a nano thin film can generate
large propagation lengths and therefore high SPP thermal conductivities.

The propagation of surface phonon-polaritons has the potential to offset the reduction of the
phonon thermal conductivity of polar dielectrics as their size is scaled down.

1] J. Ordonez-Miranda et al., J. Appl. Phys. 113, 084311 (2013).
I12] E. D. Palik, Handbook of optical constants of solids (Academic press, Orlando, 1997).



