CONTROLLING FLUORESCENCE EMISSION WITH NANO-PHOTONICS AND –PLASMONICS. ANALOGIES WITH CONTROLLING BLACKBODY RADIATION ?

<u>Hugo Frederich^{1,2}</u>, Phan Ngoc Hong¹, Fangfang Wen¹, Julien Laverdant¹, Catherine Schwob¹, Laurent Coolen¹, Jean-Pierre Hermier², and Agnès Maître¹

> 1: INSP, Université Pierre et Marie Curie 2: GEMAC, Université Versailles St-Quentin

hugo.frederich@uvsq.fr PhD thesis (2012) available on http://tel.archives-ouvertes.fr

Context & Summary

Aim of the group (INSP) : Achieving a higher degree of control over the spontaneous emission of fluorescence in the visible range (*Control of intensity, life-time, direction and polarization of emission*).

Systems studied : Semiconductor Nanocrystals coupled to photonic and plasmonic crystals. Utilization of self-assembly methods to obtain the structures.

My contributions : optical caracterisation and modelisation of opals and 2D plasmonic crystals, study of nanocrystals emission enhancement by 2D plasmonic crystals.

Photonic Crystals periodically modulated dielectric material

Institut des NanoSciences de Paris

Plasmonic Crystals peridodically modulated plasmonic surface

2D

Self-assembled Gold Grating

3D Self-assembled Photonic crystals

 \succ FCC structure of silica spheres (200 to 450 nm) : obtained by soft chemistry methods. Samples of several cm² with a unique orientation of lattice.

Stop bands are created in the dispersion relation of light as a result of destructive interferences in the photonic crystal.

Avoine, PRB 86, 165432 (2012)

Emission modification by in a defect layer acting like a photonic cavity

Phan Ngoc Hong (INSP)

Opal with defect layer : Transmission

A cavity is created by introducing a defect layer between two opals (sputtering of silica). A pass-band opens in the photonic stop-band.

Nanocrystals deposited in the defect layer undergo an inhibition of their fluorescence in the stop-band and an exaltation in the pass-band.

Surface Plasmon Polaritons-mediated fluorescence on a gold plasmonic crystal

Sample fabrication

Surface Plasmon Polaritons (SPP) : propagation on the gold surface

Gold 2D grating : period close to λ_{SPP}

Self-assembly method : large area of structured surface (several cm²)

(_{SPP}

Surface Plasmon Polaritons (p-polarized on a planar surface)

Grating induced Light – SPP coupling

- > SPP scattering by the grating (Introduction of a periodicity in the SPP dispersion relation)
- > Interaction with light: intense coupling (zeroreflectivity) observed between 600 and 700 nm)

> Broadband coupling : mostly due to self-assembly

Principle of SPP-light couling by a grating

Near-field coupling of nanocrystals to SPP

Nanocrystals: B.Dubertret, ESPCI, Paris

> Nanocrystals emit SPP in near field. Deposited in the vicinity of the gold surface, NCs can decay in SPP chanel.

$$\Gamma = \Gamma_{rad} + \Gamma_{SPP}$$

SPP-mediated fluorescence enhancement

Principle of SPP grating re-emission

> SPP are partially re-emitted in far field by the grating (in p-polarization).

- **1)** Polarization- and angle-resolved spectroscopy of the emission is performed.
- The polarization ratio shows an angle- and 2) wavelength-dependent surplus of p-polarized emission...
- ...that follows the SPP dispersion relation 3) measured by reflectivity : signature of SPP re-emission.

Quantifying SPP re-emission by comparing emission diagrams with a planar reference

Fluorescence intensity decay

Fluorescence polarization ratio

Frederich et al., Determination of the SPP extraction efficiency from a self-assembled plasmonic crystal, TO BE PUBLISHED IN 2013

