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Abstract We develop a strategy for calculating critical

exponents for the Mott insulator-to-superfluid transition

shown by the Bose–Hubbard model. Our approach is based

on the field-theoretic concept of the effective potential,

which provides a natural extension of the Landau theory of

phase transitions to quantum critical phenomena. The

coefficients of the Landau expansion of that effective

potential are obtained by high-order perturbation theory.

We counteract the divergency of the weak-coupling per-

turbation series by including the seldom considered Landau

coefficient a6 into our analysis. Our preliminary results

indicate that the critical exponents for both the condensate

density and the superfluid density, as derived from the two-

dimensional Bose–Hubbard model, deviate by less than

1 % from the best known estimates computed so far for the

three-dimensional XY universality class.

1 Introduction

The universality of phase transitions is one of the most

important concepts in the theoretical description of critical

phenomena [1–3]. It implies that continuous phase

transitions fall into universality classes determined by only

a few gross properties characterizing the respective system,

namely, the number of components of the order parameter

and their symmetry, the dimensionality of space, and the

range of interaction. Renormalization group (RG) theory

then predicts that, e.g., critical exponents are identical for

all systems within a given such class. For instance, the

lambda transition undergone by liquid 4He at the temper-

ature of 2.17 K is the primary example of the three-

dimensional XY universality class, that is, the class with a

two-dimensional (or complex) order parameter with O(2)

symmetry in three spatial dimensions, and with short-range

interactions. Thus, the critical exponent describing the

specific-heat singularity at the lambda point, which was

found to be a = - 0.0127 ± 0.0003 in an elaborate

zero-gravity experiment [4], should coincide with the

corresponding exponent predicted by U4 theory. Indeed, a

seven-loop expansion in three dimensions has resulted

in the value a = - 0.01126 ± 0.0010 [5], while a =

- 0.0146 ± 0.0008 has been obtained by combining

Monte Carlo simulations based on finite-size scaling

methods with high-temperature expansions [6]. Evidently,

these two theoretical estimates bracket the experimental

value, but do not agree with it, nor with themselves, within

the margins of uncertainty stated. Thus, this core test of RG

theory is not fully conclusive yet; if one accepts the

experimental result there still is a need to improve the

theoretical calculations.
In this situation, it may be of interest to observe that the

notion of universality also includes quantum phase transi-

tions, that is, transitions which occur at zero temperature

upon variation of a parameter of the system under con-

sideration, being triggered by quantum rather than thermal

fluctuations [7]. In particular, the Mott insulator-to-super-

fluid transition exhibited by the Bose–Hubbard model on a
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d-dimensional cubic lattice falls into the universality class

of the (d ? 1)-dimensional XY model at special multicrit-

ical points with particle-hole symmetry [8], implying that

the critical exponents provided by the two-dimensional

(2D) Bose–Hubbard model should agree with those of the

lambda transition. Now that this 2D Bose–Hubbard model

has been emulated with ultracold 87Rb atoms loaded into

stacks of planar optical lattices [9, 10], and even the con-

densate fraction of such a Bose gas in a 2D lattice has been

measured across the Mott insulator-to-superfluid transition

[11], future precision experiments on this system might

enable one to accurately determine the corresponding

critical exponents, and thus to provide a further nontrivial

test of universality. Indeed, the exploration of critical

behavior with ultracold dilute quantum gases has already

been taken up by Donner et al. [12], who have measured

the critical exponent of the correlation length for a har-

monically trapped, weakly interacting 3D Bose gas, albeit

with still a comparatively large error bar.

On the theoretical side, the archetypal Bose–Hubbard

model lends itself to alternative computational schemes.

Only recently, Rançon and Dupuis [13] have presented a

detailed RG approach to this model, taking into account

both local and long-distance fluctuations. Somewhat

alarmingly, the numerical value of the critical exponent for

the correlation length of the 2D system derived from that

study amounts to m = 0.699, differing quite substantially

from the value m = 0.67155 ± 0.00027 previously repor-

ted by Campostrini et al. [6]. This finding appears to put

universality into question, and hence calls for further

independent calculations. In the present paper, we establish

a ‘‘hands-on’’ approach to the critical exponents of the

Bose–Hubbard model, based on the field-theoretic concept

of the effective potential [1, 3], which opens a natural

bridge to Landau’s theory of phase transitions [14, 15]. We

focus on the exponent bc for the condensate density, and on

the exponent f for the superfluid density, from which one

can deduce all other critical exponents by exploiting

(hyper-)scaling relations [16, 17]. We proceed as follows:

In Sect. 2 we retrace the basic steps required for deriving

the Landau expansion of the effective potential [14, 15],

and explain how this expansion is employed for computing

both the condensate and superfluid densities. In Sect. 3 we

recapitulate the idea of the process chain approach [18],

which yields perturbative approximants to the individual

Landau coefficients. The results obtained by evaluating the

perturbation series numerically to high orders in the hop-

ping strength are then discussed at length in Sect. 4. Here,

we encounter a vexing problem, namely, the divergency of

weak-coupling perturbation theory. In principle, this calls

for a systematic resummation procedure for deducing the

‘‘true’’, regular Landau coefficients from their diverging

polynomial approximants. Nonetheless, here we show that

even without such a procedure, but by explicitly including

the seldom considered Landau coefficient a6 into the

analysis, one is able to extract critical exponents for the 2D

Bose–Hubbard system which agree to better than 1 % with

those computed for the lambda transition [6], thus pro-

viding fair evidence in favor of universality. Our ad hoc

procedure still requires formal justification and hence

should be regarded as preliminary, but quite similar results

are obtained by applying variational perturbation theory

[19]. Some conclusions are drawn in the final Sect. 5.

2 The method of the effective potential

The pure Bose–Hubbard model describes Bose particles on

a lattice which are allowed to tunnel between neighboring

lattice sites, while repelling each other when occupying the

same site. In terms of operators bbyi and bbi which encode the

creation and annihilation of a Bose particle at the ith site

and thus obey the commutation relation

½bbi; bb
y
j � ¼ dij; ð1Þ

it is defined by the grand-canonical Hamiltonian [8]

bHBH ¼ bH0 þ bHtun; ð2Þ

where the site-diagonal part

bH0 ¼
1

2

X

i

bniðbni � 1Þ � l=U
X

i

bni ð3Þ

models the on-site repulsion and fixes the total particle

number through the adjustment of the chemical potential l.

Here,

bni ¼ bbyi bbi ð4Þ

counts the number of particles at the ith site and U is the

repulsion energy contributed by any pair of particles sitting

on a common site. We are using this energy U as scale of

reference for writing the Hamiltonian in dimensionless

form. On the other hand, denoting the energy associated

with a hopping event by J, nearest-neighbor tunneling of

the particles is described by

bHtun ¼ �J=U
X

hi;ji

bb
y
i
bbj; ð5Þ

with the angular brackets under the sum indicating that i and

j are restricted to pairs of adjacent sites. As is well known,

the particle-delocalizing tendency of bHtun counteracts the

localizing tendency of the repulsive interaction, so that the

system exhibits a transition from a Mott insulator to a

superfluid when the control parameter J/U is enhanced

gradually, while the scaled chemical potential l/U is kept

constant [7, 8].
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In order to map out this quantum phase transition, one

studies the system’s reaction to the attempt to couple par-

ticles into or out of the lattice through spatially homoge-

neous sources and drains, as expressed by the extended

Hamiltonian

bH ¼ bHBH þ bHs�d; ð6Þ

where

bHs�d ¼
X

i

ðgbbyi þ g� bbiÞ: ð7Þ

Formally, this step corresponds to explicitly breaking the

global particle-number conservation built into bHBH; the

intuitive idea being that the system should resist this

attempt for sufficiently small source strength g when being

in a Mott insulator state, but show some response for any

nonzero g in the superfluid state.

Restricting ourselves to zero temperature, the free

energy F of the extended system is given by the ground-

state expectation value of its Hamiltonian,

FðJ=U; l=U; g; g�Þ ¼ h bHi: ð8Þ

Assuming the lattice to consist of M sites (while stipulating

that the thermodynamic limit M !1 be taken

eventually), we expand this free energy in the form

FðJ=U; l=U; g; g�Þ

¼ M f0ðJ=U; l=UÞ þ
X
1

k¼1

c2kðJ=U; l=UÞjgj2k

 !

;
ð9Þ

so that f0 denotes the free energy per site of the original

system (2). The fact that F is expressed here in powers of

|g|2, rather than of g and g* individually, is understood from

the perturbative viewpoint adopted in the following sec-

tion. If one regards the creation and annihilation operations

implementing these sources and drains as individual per-

turbation events, it is obvious that only processes with an

equal number of creation and annihilation events, and

hence terms with equal powers of g and g*, can contribute

to the expectation value (8).

Following the guiding insight that the response of the

system to the sources or drains, and hence the change of F
with g or g*, should reveal its state, it is only natural to

consider the intensive quantities

w ¼ 1

M

oF
og�
¼ hbbii; w� ¼ 1

M

oF
og
¼ hbbyi i: ð10Þ

The respective first equalities in these two relations are

nothing but definitions of w and w*, whereas the respective

second equalities follow immediately from the Hellmann–

Feynman theorem [20, 21]. Of course, this is the standard

way in field theory to introduce the order parameter [1, 3].

The decisive step now is to take w and w* as new

independent variables. This is accomplished by performing

a Legendre transformation of F ; thus constructing the

effective potential [14]

CðJ=U; l=U;w;w�Þ ¼ F �Mðg�wþ gw�Þ; ð11Þ

where the old variables g and g* have to be expressed in

terms of w and w*. To this end, combining the definition

(10) with the expansion (9) gives

w ¼ g½c2 þ 2c4jgj2 þ 3c6jgj4 þOðjgj6Þ� ð12Þ

and its complex conjugate, which then yields

g ¼ w
1

c2

� 2c4

c4
2

jwj2 þ 12c2
4

c7
2

� 3c6

c6
2

� �

jwj4 þOðjwj6Þ
� �

ð13Þ

upon inversion. Inserting, one obtains the effective

potential (11) as a series in powers of |w|2:

1

M
C ¼ f0 þ a2jwj2 þ a4jwj4 þ a6jwj6 þOðjwj8Þ ð14Þ

with coefficients

a2 ¼ �
1

c2

; a4 ¼
c4

c4
2

; a6 ¼
c6

c6
2

� 4c2
4

c7
2

; ð15Þ

having suppressed their dependence on J/U and l/U.

So far, these elementary considerations still refer to the

extended system (6), from which the original Bose–Hub-

bard model (2) is recovered by equating g = g* = 0. By

construction, g and w* on the one hand, and g* and w on the

other, each constitute a Legendre-conjugated pair [22], so

that one also has

1

M

oC
ow�
¼ �g;

1

M

oC
ow
¼ �g�: ð16Þ

This is what finally explains why C has suggestively been

named ‘‘effective potential’’: setting g = g* = 0 in these

equations (16) means that the order parameter w0

describing the actual Bose–Hubbard system (2) is deter-

mined by finding a stationary point of C; in the same

manner as a mechanical equilibrium is determined by a

stationary point of some given mechanical potential, with

stable equilibria corresponding to minima.

Now, we can virtually copy the Landau theory of phase

transitions. Assuming a4 and a6 to be positive and

neglecting higher order terms of the effective potential

(14), the minimum of C is found at w0 = 0 as long as

a2 [ 0, which indicates the Mott insulator phase. In con-

trast, when a2 \ 0 the order parameter takes on a nonzero

value, signaling the presence of the superfluid phase. Since

| w0 |2 then is to be identified with the condensate density

.c, one has

Perturbative calculation of critical exponents
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.c ¼ jw0j
2 ¼ 1

3a6

�a4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
4 � 3a2a6

q
� �

ð17Þ

when a2 \ 0. Thus, knowledge of solely the coefficient

a2(J/U, l/U) already enables one to locate the phase

boundary by means of the condition a2 = 0 [14]; if one

possesses still more information on the effective potential,

in the guise of the higher coeffients a4 and a6, say, one can

even monitor the appearance of the order parameter when

that boundary is crossed, and hence determine the critical

exponent bc of the condensate density.

For computing also the superfluid density .s and its

critcial exponent f; we recall that if

v0ðxÞ ¼ exp
�

iuðxÞ
�

jv0ðxÞj ð18Þ

is a single-particle state macroscopically occupied by Bose

particles of mass m, the superfluid velocity vsðxÞ is defined

by the relation [23]

vsðxÞ ¼
�h

m
ruðxÞ: ð19Þ

Dealing with a d-dimensional hypercubic lattice, it is

convenient to adopt the particular choice

uðxÞ ¼ he � x=L; ð20Þ

where e is a unit vector in the direction of an arbitrary

lattice axis, all of which are equivalent. This means that the

phase progresses by the twist angle h on each path of length

L parallel to e: The twist is imposed on the many-body

wave function W by requiring [24, 25]

Wð. . .; xj þ Le; . . .Þ ¼ eihWð. . .; xj; . . .Þ ð21Þ

for each particle (labeled here by j). Operationally, this is

achieved by performing the local unitary transformation

bbi ! eiuðxiÞ bbi; bbyi ! e�iuðxiÞ bbyi ; ð22Þ

where xi is the position of the lattice site No. i; in this way,

the boundary conditions are shifted onto the Hamiltonian.

Now let FðhÞ be the free energy (8) as belonging to the

‘‘twisted’’ Hamiltonian which gives rise to superfluid flow,

denote the number of lattice sites inside the hypercube Ld

by M, and specify .s as the number of superfluid particles

per lattice site. If the particles were free, this would imply

U½FðhÞ � Fð0Þ� ¼ M.s

m

2
v2

s

¼ M.s

m

2

�h

m

� �2 h
L

� �2

:
ð23Þ

But since the single-particle dispersion relation actually reads

EðkÞ ¼ �2J
X

d

j¼1

cosðkjaÞ; ð24Þ

where a is the lattice constant, one has to replace the factor

�h2=ð2mÞ in Eq. (23) by Ja2. Moreover, by virtue of the

geometrical properties of the Legendre transformation [22]

the free energy equals the effective potential when the

latter is evaluated at its mimimum w0 [15]. Taken together,

this gives

U½CðhÞjw0
� Cð0Þjw0

� ¼ M.sJa2 h
L

� �2

ð25Þ

for sufficiently small h/L. Measuring lengths in multiples of

the lattice constant and hence writing ‘ = L/a, this finally

leads to

.s ¼ lim
h!0

1

MJ=U

‘

h

� �2

½CðhÞjw0
� Cð0Þjw0

�: ð26Þ

This expression is closely related to the helicity modulus

introduced by Fisher et al. [16], emphasizing that the

superfluid density quantifies the rigidity of the system

under the imposed twist. Thus, sufficient knowledge of the

effective potential, both with and without such a twist,

enables one to monitor the emergence of .s when the phase

boundary is crossed upon varying J/U, and thereby to

determine its critical exponent f:

3 The process-chain approach to compute the effective

potential

The main computational task now consists in the calcula-

tion of the expansion coefficients a2k of the effective

potential (14), which, according to Eq. (15), are given in

terms of the coefficients c2k introduced in the expansion (9)

of the free energy, either without or including an additional

phase twist (22). We obtain these coefficients by means of

the process-chain approach devised by Eckardt [18], which

is based on a formulation of the perturbation series going

back to the Japanese mathematician Tosio Kato [26, 27]:

consider a Hamiltonian bH0 with a nondegenerate eigenstate

jmi and corresponding eigenvalue Em
(0) which is subjected

to some suitable perturbation bV ; such that the total Ham-

iltonian becomes bH ¼ bH0 þ bV : Then the nth-order con-

tribution Em
(n) to the perturbation series

Em ¼ Eð0Þm þ
X
1

n¼1

EðnÞm ð27Þ

for the eigenvalue Em of bH which evolves from Em
(0) upon

turning on the perturbation can be written in the

nonrecursive form [26, 27]

EðnÞm ¼ tr
X

Kn

bSa1 bV bSa2 bV bSa3 � � � bSan bV bSanþ1

" #

; ð28Þ
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where the chain operators bSa concatenating the n

perturbing operators bV are given by

bSa ¼
�jmihmj for a ¼ 0

X

i6¼m

jiihij
E
ð0Þ
m � E

ð0Þ
i

	 
a for a [ 0;

8

>

<

>

:

ð29Þ

and the sum extends over all sets of n ? 1 nonnegative

integers aj which sum up to n - 1,

Kn ¼ ða1; . . .; anþ1Þ
�

�

�

X
nþ1

j¼1

aj ¼ n� 1

( )

: ð30Þ

By means of standard manipulations [18, 28], the

individual terms arising from Kato’s trace formula (28)

can be cast into matrix elements of the form

hmj bV bSa1
bV bSa2 � � � bSan�1

bV jmi; ð31Þ

to be multiplied with certain weight factors. These matrix

elements allow for an intuitive interpretation: starting from

the initial state jmi; the system undergoes a chain of n sub-

sequent perturbation processes before finally returning to

jmi: If there are no selection rules making some of these

matrix elements vanish, their number increases by a factor of

more than 2 when advancing from n to n ? 1: one faces ten

elements in 5th order, but already 627 for n = 10 [18, 28].

In our case, the ‘‘unperturbed’’ operator bH0 is given by

the site-diagonal component (3) of the Bose–Hubbard

Hamiltonian, the eigenstates of which are characterized by

sharp occupation numbers for each lattice site. We consider

a Mott state with integer filling factor g, that is, a state with

g particles residing on each site:

jmi ¼
Y

i

ðbbyi Þ
g

ffiffiffiffi

g!
p j0i; ð32Þ

where j0i is the empty-lattice state. In what follows we

restrict ourselves to g = 1, meaning that we have to

adjust l/U accordingly. The perturbation is given by the

tunneling Hamiltonian (5) combined with the sources and

drains described by the symmetry-breaking extension (7),

so that

bV ¼ bHtun þ bHs�d; ð33Þ

and the goal is to evaluate the perturbation series (27) for

h bHi ¼ Em: Now the representation (9) tells us that the

desired quantities c2k emerge as prefactors of |g|2k in a

series expansion of Em/M with respect to powers of |g|2,

and therefore are given by all process chains containing k

creation operators bb
y
i and further k annihilation operators

bbj : Hence, when considering a formal hopping expansion

of these functions,

c2k ¼
X
1

m¼0

cðmÞ2k ðJ=UÞm; ð34Þ

nth-order perturbation theory gives access to the coeffi-

cients c2k
(m) with m = n - 2k, assuming n C 2k. By con-

struction, these coefficients embody the collection of all

process chains with k creation and k annihilation events,

and n - 2k additional hopping events; a diagrammatic

representation of the lowest-order contributions to c2, c4,

and c6 is depicted in Fig. 1. When mastering this process-

chain approach in higher orders, the computational bottleneck

does not lie in the determination of the comparatively few

Kato terms (31), but rather in the fact that for each such term

one has to consider all permutations of the respective pro-

cesses [28]—requiring us to deal with 12! = 479,001,600

permutations for n = 12, which is the maximum order con-

sidered in the present paper.

Nonetheless, this process-chain approach can be

implemented in a numerically efficient manner. So far, we

have employed this technique for computing accurate

phase boundaries for cubic lattices with arbitrary filling

factors [28, 29], for establishing a scaling property of the

critical hopping strengths [30], and for determining the

critical parameters for both triangular and hexagonal lat-

tices [31]. In a more recent study of Bose–Hubbard and

Jaynes–Cummings lattice models, the process-chain

approach has been judged to be extremely powerful [32]; a

closely related scheme has been utilized successfully for

evaluating high-order terms for the fermionic Hubbard

model [33]. In the following chapter, we will report our

preliminary results obtained when applying the perturba-

tive process-chain approach for the determination of the

effective potential of the Bose–Hubbard model, and, in a

straightforward further step, for the calculation of critical

exponents.

n = 3

n = 4

n = 2

c

n = 4

n = 5

c
42

c
6

n = 6

n = 7

Fig. 1 Diagrammatic representation of the lowest-order contributions

to the quantities c2, c4, and c6. Creation and annihilation processes are

symbolized by open boxes and crosses, respectively; each arrow
denotes a tunneling process between neighboring lattice sites. In

general, the coefficients c2k
(m) introduced in the formal expansion (34)

incorporate all chains with k creation events, k annihilation events,

and m = n - 2k tunneling events. The determination of all such

diagrams, and their respective weights, is accomplished by the

process-chain approach
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4 Results

Having gone through the preceding deliberations, the

roadmap now is plainly laid out. The process-chain

approach is employed for computing polynomial approxi-

mations to the coefficients c2k(J/U, l/U). These are rear-

ranged to provide corresponding approximations to the

coefficients a2k(J/U, l/U) appearing in the Landau expan-

sion (14) of the effective potential, from which one then

obtains the condensate density .c and, after inclusion of a

phase twist, the superfluid density .s.

Figure 2 shows results for the coefficient a2 for the 2D

Bose–Hubbard model with fixed chemical potential

(l/U)c = 0.373, as corresponding to the border between

the Mott insulator and the superfluid state with filling factor

g = 1 (see also Fig. 4 below). Maximum hopping orders

taken into account here range from mm = 2 to mm = 9,

matching the orders n = 4 to n = 11 of the perturbation

series. The zeros of the successive approximants to a2,

considered as functions of the scaled hopping strength

J/U, mark the respective estimates ðJ=UÞðmmÞ
0 of the scaled

critical hopping strength ðJ=UÞc for g = 1; these zeros are

plotted in Fig. 3 over the inverse hopping order. Evidently,

data points resulting from odd and even mm can separately

be fitted to straight lines; the extrapolations of these lines

for mm !1; or 1/mm ? 0, should contain information on

the true value of (J/U)c. Alternatively one can compute the

phase boundary by means of the ‘‘ratio-test’’ method,

which amounts to estimating the apparent radius of con-

vergence of the series (34) for c2 [28, 29], instead of

determining the zero of a2 = - 1/c2. Including contribu-

tions up to n = 11, we find (J/U)c & 0.05920 in this

manner, suggesting that the two extrapolated values

inferred from Fig. 3 serve as upper and lower bounds on

the actual value. If one accepts this hypothesis, the possible

error of our phase boundary is at most on the order of 2 %.

Indeed, this estimate is well compatible with the result

(J/U)c = 0.05974(3) provided by quantum Monte Carlo

(QMC) simulations [34].

Figure 4 then depicts the entire lowest Mott lobe for the

2D Bose–Hubbard model, i.e., the boundary between the

Mott insulator state with g = 1 (inside the lobe) and

the superfluid state (outside); here, the result provided by

the ratio test is framed by the two bounds determined

according to the scheme depicted in Fig. 3. In order to

compute the critical exponents of the quantum phase

transition, we have to focus on the tip of this lobe [8].

Perturbative approximants to the higher effective

potential coefficients a4 and a6 for the 2D Bose–Hubbard

model are displayed in Fig. 5; note that the computation of

a4 with mm = 8, or that of a6 with mm = 6, necessitates to

evaluate the perturbation series even to 12th order. In

marked contrast to a2, now the successive ‘‘approxima-

tions’’ do not approach each other with increasing mm in the

vicinity of (J/U)c, but rather appear to diverge strongly in

an alternating manner; increasing accuracy with increasing

mm is achieved only for comparatively small J/U. Evidently

we are dealing with asymptotic series; to deduce the true

behavior of both a4 and a6 close to the phase transition, one

needs to convert the divergent weak-coupling series into

convergent strong-coupling expansions. Techniques for

0.05 0.06 0.07 0.08
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

J/U

a 2

Fig. 2 Successive perturbational approximants to the Landau coef-

ficient a2 for the 2D Bose–Hubbard model with scaled chemical

potential (l/U)c = 0.373, as corresponding to the tip of the Mott lobe

with filling factor g = 1. Starting with the leftmost line, and

proceeding counter-clockwise, the respective maximum hopping

orders mm are 3, 2, 5, 7, 4, 9, 6, and 8. Here and in the following

Figs. 5–7, full lines refer to even and dashed lines to odd mm

0 0.1 0.2 0.3

0.054

0.056

0.058

0.06

ν1/

(J
/U

)(ν
m

 )
0

 

 

odd
even
linear fit

Fig. 3 Zeros ðJ=UÞðmmÞ
0 of the approximants to a2 shown in Fig. 2,

plotted versus the inverse maximum hopping order. Observe that data
points belonging to odd or even mm can be fitted separately to straight
lines. The extrapolations of these lines to the left margin provide

upper and lower bounds on the critical-scaled hopping strength (J/U)c
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doing this do exist [35], but would require some a priori

information on the functional form of the true a4 and a6. A

similar pattern is also observed in Fig. 6, in which corre-

sponding plots of a2, a4, and a6 for the 3D system with

g = 1 are grouped together. While successive estimates of

the zero of a2 actually come closer to each other with

increasing mm, allowing one to determine (J/U)c & 0.03407

by extrapolation, successive approximants to a4 and a6

repel each other in the vicinity of (J/U)c, although this

divergence appears to be somewhat less violent here than

for d = 2. Again, our above estimate of (J/U)c compares

very favorably with the QMC result (U/J)c = 29.34(2)

[36].

However, we are not primarily interested in the indi-

vidual Landau coefficients (15), but rather in the full

effective potential (14). It is, therefore, interesting to

observe that the divergent behavior of the perturbative

approximants to a6 appears to counteract the divergency of

the approximants to a4: whereas the odd-order approxi-

mants (dashed lines) appear to ‘‘overshoot’’ the true values

of a4 for both the 2D (Fig. 5) and 3D systems (Fig. 6), they

tend to ‘‘undershoot’’ the respective true values of a6, and

vice versa for the even orders (full lines). Moreover, these

higher coefficients enter into C only to higher orders in |w|2,

while we require accurate knowledge of C for small |w|.

Thus, there is some hope that one still obtains a useful

approximation to the effective potential even from the

nonresummed coefficients. This hypothesis is supported by

Fig. 7, which depicts successive approximants to the

effective potential C=M for the 2D system, as computed

from a2, a4, and a6 as functions of |w|. The upper panel

refers to J/U = 0.055; the trend of the graphs with

increasing mm suggests that the higher-order approximants

indeed yield an acceptable estimate of C in the full range

0 B |w| B 0.1 considered. The lower panel shows a similar

plot for J/U = 0.059, quite close to the critical value,

where one still finds a fairly reasonable behavior of the

approximants even up to |w| = 0.5.

This observation allows us to proceed, albeit tentatively,

with the perturbative approximants to the coefficients (15),

and to use these for computing the condensate density .c by

means of Eq. (17). Here we admit even-order approximants

only, since according to Figs. 5 and 6 only even mm provide

positive a6, and hence guarantee a stable, confining effec-

tive potential when terminating the Landau expansion (14)

after the sixth-order term; approximants with odd mm are

disregarded. Moreover, when Eq. (26) is evaluated likewise

with a sufficiently small value of the twist h/‘, it yields a

corresponding estimate of the superfluid density .s. Fig-

ure 8 shows results thus obtained with mm = 6 for d = 2

(main frame), and with mm = 4 for d = 3 (inset). Both

densities initially increase about linearly for d = 3, her-

alding trivial (mean-field) critical exponents bc ¼ 1 for .c;
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Fig. 4 Mott lobe with filling factor g = 1 for the 2D Bose–Hubbard

model, computed with the ‘‘ratio-test’’ method put forward in Refs.

[28, 29]. Also shown are the bounds obtained by the procedure

sketched in Fig. 3
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Fig. 5 Upper panel approximants to the coefficient a4 for d = 2 and

(l/U)c = 0.373, as in Fig. 2. Starting with the leftmost line crossing

the lower margin, and proceeding counter-clockwise along the

margin, the respective maximum hopping orders mm are 8, 6, 4, 2,

3, 5, 7. Lower panel approximants to the coefficient a6 for d = 2 and

(l/U)c = 0.373. Starting with the line crossing the lower margin and

proceeding counter-clockwise, the respective maximum hopping

orders mm are 5, 3, 2, 4, 6. Vertical dashed lines mark (J/U)c
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and f ¼ 1 for .s. This is to be expected, because the 3D

Bose–Hubbard system belongs to the universality class of

the 4D XY model; since d = 4 is the upper critical
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Fig. 6 Upper panel successive perturbational approximants to the

Landau coefficient a2 for the 3D Bose–Hubbard model with scaled

chemical potential (l/U)c = 0.393, as corresponding to the tip of the

Mott lobe with filling factor g = 1. Starting with the leftmost straight
line and proceeding rightwards, the respective maximum hopping

orders mm are 3, 2, 5, 4, 7, 6. Middle panel as above for the coefficient

a4. Starting with the leftmost line crossing the lower margin, and

proceeding counter-clockwise along the margin, maximum hopping

orders mm are 6, 4, 2, 3, 5. Lower panel as above for the coefficient a6.

Maximum hopping orders mm, assigned as above, are 3, 2, 4. Vertical
dashed lines mark (J/U)c
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Fig. 7 Effective potential CðwÞ=M evaluated for the 2D Bose–

Hubbard model with (l/U)c = 0.373, and J/U = 0.055 (above) or

J/U = 0.059 (below). Proceeding from bottom to top at the right
margin, maximum hopping orders mm are 3, 5, 7, 4, 6 for both panels
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Fig. 8 Superfluid density .s (full lines) and condensate density .c

(dotted) for d = 2 with mm = 6 (main frame), and for d = 3 with

mm = 4 (inset). While the close-to-linear increase of both densities for

d = 3 yields the expected mean-field exponents bc ¼ f ¼ 1; one finds

nontrivial exponents for d = 2. The superfluid densities have been

computed with the twist h/‘ = 0.001
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dimension of this latter model, mean-field theory provides

the correct critical exponents for this dimension, and all

higher ones. On the other hand, the 2D Bose–Hubbard

system falls into the 3D XY universality class; in this case

the exponents are nontrivial. Thus, although the Bose–

Hubbard system with d = 3 spatial dimensions is compu-

tationally more demanding, d = 2 is the case of main

interest. Indeed, Fig. 8 clearly indicates that the exponents

for d = 2 must be significantly lower than 1; from the fact

that the 2D condensate density .c (dotted) lies below the

superfluid density .s (full line) one deduces that the

exponent bc of .c is larger than the exponent f of .s. This

finding is in line with the Josephson relation [16, 17, 37]

f ¼ bc � gm; ð35Þ

where m is the critical exponent of the correlation length, as

already referred to in the ‘‘Introduction’’ section, and g is

the critical exponent of the correlation function.

Assuming now that the densities behave as

. / ðJ=U � ðJ=UÞcÞ
x ð36Þ

for J/U somewhat larger than (J/U)c, the respective critical

exponent x is unveiled by computing the logarithmic

derivative

Dlog. ¼ d log .
d logðJ=U � ðJ=UÞcÞ

ð37Þ

and taking the limit

x ¼ lim
J=U�ðJ=UÞc!0

Dlog.: ð38Þ

In Fig. 9 we plot the logarithmic derivative (37) of .c for

both d = 2 as obtained from approximations with either

mm = 4 or mm = 6, and for d = 3 with mm = 4. Evidently,

these derivatives behave almost linearly over wide ranges

of J/U, with the exception of the immediate vicinity of

(J/U)c. But this latter regime has to be ignored anyway,

because all our numerical results are given in terms of

power series, thus isolating a single term close to

(J/U)c, whereas several powers have to combine in order to

mimic noninteger exponents. Therefore, we obtain plausi-

ble finite-order estimates bðmmÞ
c of the condensate-density

exponent bc by extending the linear slopes to J/U -

(J/U)c = 0. To begin with, for d = 3 we have bc
(4) & 0.94,

quite close to the known exact value bc = 1. In view of our

still shaky line of reasoning concerning the partial com-

pensation of the divergencies plaguing the individual

coefficients a4 and a6, this finding is quite encouraging.

Turning at last to the truly interesting case d = 2, and

proceeding as above, we obtain the estimates bc
(4) and bc

(6)

listed in Table 1; a linear fit of these data over 1/mm then

provides the limit bc = 0.7029 for mm !1: Similarly, we

compute finite-order estimates fðmmÞ of the superfluid-den-

sity exponent f; with an imposed twist of either h/‘ = 0.01,

or h/‘ = 0.001. First the extrapolation to mm ¼ 1 is done

separately for each twist, as is also documented in Table 1;

then a further linear extrapolation to h/‘ = 0 gives the final

value f ¼ 0:6681:

5 Discussion and outlook

The concept of the effective potential C; borrowed from

field theory [1, 3], provides an immediate connection

between quantum critical phenomena and Landau’s theory

of phase transitions [14, 15]. Knowledge of the coefficient

a2 appearing in the Landau expansion (14) of C allows one

to locate the phase boundary; knowledge of the higher

coefficients in the vicinity of that boundary enables one to

also monitor the emergence of the order parameter |w0|, and

hence to determine the associated critical exponent b.

In Sect. 4 we have applied this scheme to the Mott
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Fig. 9 Logarithmic derivative (37) of the condensate density

.c, computed according to Eq. (17) for d = 2 with both mm = 4 and

mm = 6, and for d = 3 with mm = 4. Observe that continuing the

linear part of the graph for d = 3 to J/U - (J/U)c = 0 yields bc = 1

with reasonable accuracy, whereas the data for d = 2 clearly suggest

a smaller value

Table 1 Finite-order estimates of the critical exponent bc for the

condensate density .c, and of the critical exponent f for the superfluid

density .s, as obtained for the 2D Bose–Hubbard model

bðmmÞ
c fðmmÞ

mm \ h/‘ – 0.001 0.01

4 0.5715 0.6446 0.6463

6 0.6153 0.6525 0.6541

1 0.7029 0.6683 0.6697

h/‘ ? 0 – 0.6681

Also listed are their extrapolations to infinite order, performed line-

arly in 1/mm. In the case of f two values of the twist h/‘ are considered,

providing data which are extrapolated separately to mm ¼ 1; a further

linear extrapolation then yields the desired limit for h/‘ ? 0
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insulator-to-superfluid transition shown by the Bose–Hubbard

model, after having computed the Landau coefficients by

high-order perturbation theory. In principle, the condensate

density then is given by the familiar relation

.c ¼ jw0j
2 ¼ � a2

2a4

ð39Þ

for hopping strengths J/U slightly above the critical value,

so that it should suffice to calculate a2 and a4 only. How-

ever, our perturbative approximants to these coefficients

suffer from the divergency of the weak-coupling pertur-

bation series, so that the above Eq. (39) can be exploited

only if our approach is supplemented by a controlled pro-

cedure for converting a divergent weak-coupling series into

a convergent strong-coupling expansion, as exemplified in

Ref. [35]. While such a procedure would require some a

priori information on the behavior of the true a4, here we

have followed a different route, relying on the observation

that the divergent behavior of the a4 approximants is

counteracted by that of the approximants to a6, as seen in

Figs. 5 and 6. Therefore, we keep the sixth-order term in

the Landau expansion (31) and replace Eq. (39) for .c by

its extended analog (17); the same approximation to C is

employed when evaluating Eq. (26) for the superfluid

density .s. The critical exponent b = bc/2 for the order

parameter and the exponent f for the superfluid density

determined in this manner for the 2D Bose–Hubbard model

are juxtaposed in Table 2 to the corresponding best known

estimates computed for the 3D XY universality class [6]. In

the case of f; we have employed the hyperscaling relation

f ¼ ðd � 2Þm; which reduces to f ¼ m for d = 3 and thus

equates f with the critical exponent m for the correlation

length [16, 17]. While the accuracy of our results is diffi-

cult to specify, and certainly does not match that achieved

in Ref. [6], the very fact that the numerical values coincide

to better than 1 % constitutes an impressive manifestation

of universality.

Yet, our findings still have to be regarded as pre-

liminary. Subsequent steps to be taken now should involve

a more systematic processing of the perturbative data,

combined with an improved fitting procedure and a reliable

error estimate, and it will be important to answer the

question whether the encouraging first results reported here

can be made more precise [19].

Still, physics is not about producing numbers, but about

providing insight. It is, therefore, quite striking to observe

that the elemental 2D Bose–Hubbard model actually pro-

vides the critical exponents of the lambda transition, and it

might be interesting to pin down the ‘‘carrier’’ of this

universality in terms of the process-chain diagrams

involved in the computation of the Landau coefficients. Is

there, perhaps, some simple properties of these diagrams

which clarify why the 2D model differs so significantly

from the 3D one?

Of course, the ultimate test of universality will also

require an experimental high-precision measurement of the

critical exponents of the 2D Bose–Hubbard model, as

realized with ultracold atoms in planar optical lattices.

Besides the experiments referred to in the ‘‘Introduction’’

section, recent studies aiming at the single-site address-

ability of ultracold atoms in optical lattices [38–41] hold a

particularly high promise in this respect, since such tech-

niques may allow one to directly measure spatial correla-

tion functions, and thereby to determine the exponents m
and g. In any case, with ultracold atoms now entering the

field of critical phenomena, far-reaching further develop-

ments lie ahead.
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