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We investigate numerically the collisions of two distinguishable quantum matter-wave bright solitons in

a one-dimensional harmonic trap. We show that such collisions can be used to generate mesoscopic Bell

states that can reliably be distinguished from statistical mixtures. Calculation of the relevant s-wave

scattering lengths predicts that such states could potentially be realized in quantum-degenerate mixtures

of 85Rb and 133Cs. In addition to fully quantum simulations for two distinguishable two-particle solitons,

we use a mean-field description supplemented by a stochastic treatment of quantum fluctuations in the

soliton’s center of mass: we demonstrate the validity of this approach by comparison to a mathematically

rigorous effective potential treatment of the quantum many-particle problem.
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Generating quantum entanglement between mesoscopic
objects over mesoscopic distances allows the exploration
of a fascinating ‘‘middle ground’’ between quantum and
classical physics [1,2] and promises significant advances in
quantum-enhanced interferometry [3]. The high degree of
experimental control offered by quantum-degenerate gases
makes them an ideal platform with which to explore such
multiparticle entanglement [4,5]. From a fundamental
perspective, the creation of maximally entangled many-
particle Bell states in quantum-degenerate gases presents
an intriguing proposition. The generation of similar macro-
scopic Bell states of many photons is an area of current
theoretical and experimental research [6,7]. In addition
to their inherent fundamental interest, such states have
potential application as a resource in the area of quantum
information [7].

Previously, the scattering of quantum bright matter-
wave solitons [8–17] in quasi-one-dimensional (1D) trap-
ping geometries has been suggested as a way to create
mesoscopic entangled states in single-species Bose-
Einstein condensates (BECs) [13,18,19]. In this Letter,
we consider a dual-species BEC [20,21] and show that
collisions of distinguishable quantum bright matter-wave
solitons can be used to generate mesoscopic Bell states
[22] (cf. Ref. [23]),

jc Belli � 1ffiffiffi
2

p ðjA; Bi þ ei�jB; AiÞ; (1)

where jA; Bi (jB; Ai) signifies that the BEC A is on the left
(right) and the BEC B is on the right (left). In particular, we
show that a favorable combination of inter- and intraspe-
cies s-wave scattering lengths means that such states may
be realized using 85Rb and 133Cs mixtures. We also show

that the interference properties of these bright-soliton Bell
states distinguish them from statistical mixtures. In con-
trast to the Bell ground states associated with double-well
potentials, our collisionally generated Bell states are robust
to the presence of asymmetries. While distinguishable
solitons are essential to produce Bell states, entanglement
generation for solitons of the same species was investi-
gated in Ref. [13].
For our quasi-1D system, we consider an experimentally

motivated harmonic confinement ! ¼ 2�f. Mixtures of
ultracold gases can be confined in a common optical trap
with the same trap frequencies [24], yielding
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where mA (mB) is the atomic mass of species A (B); the
interactions g ¼ hf?a are set by the scattering lengths a
and the perpendicular trapping-frequency, f? [25].
We use the Lieb-Liniger model [26] for two species with

additional harmonic confinement
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where xj (yj) and gA < 0 (gB < 0) are the atomic coordi-

nates and intraspecies interactions of species A (B), and
gAB � 0 is the interspecies interaction.

We suggest to prepare the two solitons independently;
for weak harmonic confinement a single soliton has the
ground-state energy (cf. Ref. [27])

ESðNSÞ ¼ � 1

24

mSg
2
S

@
2

NSðN2
S � 1Þ; S 2 fA; Bg: (4)

Thus, our system has the total ground-state energy

E0 ¼ EAðNAÞ þ EBðNBÞ: (5)

The total kinetic energy related to the center-of-mass
momenta @KS (S 2 fA; Bg) of the two solitons reads

Ekin ¼ @
2K2

A

2NAmA

þ @
2K2

B

2NBmB

: (6)

We extend the low-energy regime investigated for
single-species solitons in Refs. [12,18,28] to two species

Ekin <minf�A;�Bg; �S ¼ jESðNS � 1Þ � ESðNSÞj:

In this energy regime, each of the quantum matter-wave
bright solitons is energetically forbidden to break up into
two or more parts. Highly entangled states are character-
ized by a roughly 50:50 chance of finding the soliton A (B)
on the left or the right, combined with a left-right correla-
tion close to one indicating that whenever soliton A is on
the one side, soliton B is on the other:
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(7)

where � ¼ �ðx1; . . . ; xNA
; y1; . . . ; yNB

Þ is the many-

particle wave function (normalized to 1) and � � 0. The
correlation �ð�Þ will serve as an indication of entangle-
ment: Bell states (1) are characterized by � ’ 1 combined
with a 50:50 chance to find soliton A either on one side or
on the other.

We begin by investigating entanglement-generating
collisions of two distinguishable two-particle solitons
(dimers). Discarding cases where the two solitons have
distinct total masses NAmA and NBmB (small differences
in the total masses would introduce small asymmetries
without changing the physics) leads to mA ¼ mB ¼ m,
which corresponds to having two hyperfine states of the
same species. To describe the collisions of the two dimers,
we discretize the Hamiltonian (3), yielding the Bose-
Hubbard Hamiltonian (cf. Ref. [29])
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ây‘ â
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‘ â‘b̂

y
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where UA, UB, and UAB are the intraspecies and interspe-
cies interactions, the hopping is given by J � @

2=ð2md2Þ
for grid spacing d ! 0, and C � 0:5m!2d2.
Figure 1 shows two-dimensional projections of the

dynamics of two distinguishable dimers. The two dimers
were numerically prepared in the ground state of two
spatially separated harmonic oscillators via imaginary
time evolution [30]. At time t ¼ 0, they were transferred
into the same harmonic oscillator potential (without
overlap). Subsequently, the time evolution was calculated
using the full Schrödinger equation corresponding to the
Hamiltonian (8). After the first collision, a measurement
would reveal dimer A on the left and dimerB on the right or
vice versa [the correlation (7) is �ðd=2Þ ’ 0:988].
As the sizes of the dimers in panels Figs. 1(a) and 1(b)

are not too large compared to the oscillator length, after the
second collision both dimers are more likely to be on the
side opposite to their initial condition than at the same
side (cf. the single soliton case [28]). This can be used to
distinguish a pure quantum superposition from a statistical

FIG. 1 (color online). Collisions of two distinguishable dimers
in the Bose-Hubbard Hamiltonian (8). (a) Single-particle density
%ðxÞ of dimer A in a two-dimensional projection as a function of
space and time (� is the oscillation period without interspecies
interaction, UA ¼ �3J,UB ¼ �3J,UAB ¼ J, and C ¼ 0:002J).
(b) Single-particle density of dimer B, with parameters as in
panel (a). (c) The same dimer as in panel (a) but with the wave
function numerically turned into a statistical mixture at t ¼ �=2.
(d) Center-of-mass density %CoMðX� YÞ if the interspecies
interaction is switched off at t ¼ �=2, with all other parameters
as in (a) and (b). The interference pattern near t ¼ 0:7�, com-
bined with a high correlation (7) of �ðd=2Þ’0:988 near t ¼ 0:5�,
indicates that a Bell state has been created.
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mixture [Fig. 1(c)]. A more general approach extends the
center-of-mass density [31] to two solitons [Fig. 1(d)]:
after switching off the interspecies interaction when the
Bell state has formed, one first measures the center of mass
X and Y of solitons A and B and then plots the resulting
density %CoM as a function of the difference X� Y.
This works both for superpositions of plane waves
exp½iKX� exp½�iKY� þ exp½�iKX� exp½iKY� with

%CoMðX� YÞ / fcos½KðX � YÞ�g2 (9)

and when the two wave packets recombine [Fig. 1(d)].
Measuring a contrast close to one as in Eq. (9) is possible
as the center of mass can be measured with higher accuracy
than the soliton width (cf. Ref. [31]). As shown in Ref. [31]
for the single-species case, CoM interferences do, in gen-
eral, not correspond to interferences in single-particle den-
sities that have been investigated, e.g., for distinguishable
BECs in Ref. [32].

To show that attractive intraspecies interactions and
repulsive, tunable interspecies interactions are experimen-
tally feasible, we calculate the s-wave scattering lengths
for 85Rb133Cs. The results displayed in Fig. 2 shows a
candidate interspecies Feshbach resonance at 6.76 G suit-
able for our requirements [33]. For lower magnetic fields,
the magnetic field can be stabilized to up to 100 �G [34];
shielding allows stabilization to 1 mG below 10 G.
Although the masses of the atoms A and B now differ,
we can still have two solitons of roughly the same total
masses NAmA and NBmB as in Fig. 1.

Behavior for larger particle numbers can be described by
the Gross-Pitaevskii equation (GPE) (cf. [35–38])
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where the single-particle density j’Sðx; tÞj2 is normalized
to NS (S 2 fA; Bg).
When hitting a barrier, the generic behavior of a mean-

field bright soliton is to break into two parts; the fraction of
the atoms transmitted decreases for increasing potential
strength (cf. Refs. [15,17]). An analogous behavior also
occurs when two mean-field bright solitons hit each other
as shown in the Supplemental Material [39].
Low kinetic energies generate very different GPE

dynamics. For the case of a single-species soliton incident
upon a potential barrier, one observes a sharp stepwise
jump in the GPE reflection coefficient as a function of
barrier height [16,28,40]. In this case we previously [28]
showed that this jump occurs in regimes where, on the
N-particle quantum level, the low kinetic energies prevent
the soliton from breaking into two (or more) smaller
solitons and thus provides a useful GPE-level indicator
for the formation of N-particle quantum superpositions.
Conjecturing that sharp stepwise jumps in the GPE

reflection coefficient for distinguishable soliton collisions
may indicate Bell states, we investigate parameters
yielding such jumps (cf. Supplemental Material [39]). To
confirm that these jumps indicate Bell state formation,
we use the truncated-Wigner approximation (TWA), which
describes quantum systems by averaging over realizations
of an appropriate classical field equation (in this case, the
GPE) with initial noise appropriate to either finite [41] or
zero temperatures [15]. Whereas the GPE assumes that
both position and momentum are well defined, this is not
true for a single quantum particle of finite mass for which,
in general, both position and momentum involve quantum
noise satisfying the uncertainty relation. Our TWA calcu-
lations for the soliton center-of-mass wave function use
Gaussian probability distributions for both (satisfying
minimal uncertainty).
To demonstrate that the center-of-mass TWA is indeed

a valid approach to describe the short-time behavior of
mesoscopic quantum superpositions, Fig. 3 starts with
the case where a light soliton hits a heavy, nonmoving
soliton. In Fig. 3(a), the rigorously proved [42] effective
potential approach [12,18,43] demonstrates the emergence
of a Schrödinger-cat state when the GPE predicts the
stepwise behavior of the reflection coefficient explained
in Refs. [16,28,40] [Fig. 3(c)].

FIG. 2 (color online). The s-wave scattering lengths for the
ground state of 85Rb133Cs, 85Rb, and 133Cs respectively.
(a) Scattering lengths are calculated using a coupled-channels
method [21] with a fully decoupled basis set at a collision energy
of 1 pK. The calculations are performed using the MOLSCAT

program [45] adapted to handle collisions in external fields [46].
The RbCs potential is from Ref. [21], the Rb potential is from
Ref. [47], and the Cs potential is from Ref. [48]. Resonances
for 85Rb133Cs are at 3.10, 4.27, and 6.76 G [33]. (b) Zoom
view of (a).
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In Fig. 3(b), we use the TWA to average over the analytic
approximation for the classical-particle-like behavior of
the GPE soliton [44]. This leads to a good qualitative
agreement with the N-particle predictions in Fig. 3(a) up
to the time where both parts of the wave function recom-
bine and quantum interference becomes important.

On the N-particle level, the low kinetic energies are
important for the soliton not to be able to break into two
(or more) smaller solitons. Whereas GPE solitons can,
during a collision, lose a small fraction of particles, for
low kinetic energies this effect becomes negligible [24].
Thus, the sharp stepwise behavior shown in Fig. 3(c) leads
to a behavior very close to the true N-particle quantum
case.

In order to observe Bell states, we investigate two distin-
guishable bright solitons of similar mass at low kinetic
energy (Ekin=jE0j¼0:182). Applying the TWA for the
center-of-mass wave functions of both solitons leads to the
single-particle densities displayed in Figs. 4(a) and 4(b).
The low kinetic energies indicate that the feature shown
in those single-particle densities near t � 0:6T should
indeed be a Bell state. The value of the correlation function
close to 1 [Fig. 4(c)] shows that we indeed have found a
Bell state. Whereas the TWA is no longer valid as soon as
both parts of the wave function overlap, a full quantum
mechanical calculation would also lead to a decrease of the
correlation in Fig. 4(c) on this time scale.

To conclude, on the basis of predictions made on the
level of many-particle quantum calculations (using the
Lieb-Liniger model), we demonstrated numerically that
mesoscopic Bell states can be generated by colliding
two distinguishable quantum matter-wave bright solitons.

In experiment, the formation of these states could be con-
firmed by switching off the interspecies interaction once
the Bell state has formed and then measuring the interfer-
ence fringes in the combined center-of-mass density (9)
(see Fig. 1), revealing the presence of quantum superposi-
tion. Finally, we have shown that matter-wave bright
solitons in 85Rb-133Cs mixtures are a promising candidate
system for the experimental realization of mesoscopic Bell
states, presenting an intriguing target for future experimen-
tal investigations.
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