Martin Holthaus
Condensed Matter Theory group
Institut für Physik
Carl von Ossietzky Universität
D - 26111 Oldenburg

Guess who!

Publications

Recent talks
Teaching in Oldenburg
Curriculum vitae

Periodic Thermodynamics
High-order perturbation theory for strongly correlated Boson systems
Fluctuating electromagnetic fields, near-field heat transfer, and related topics
Bose-Einstein condensates: Coherent control by time-periodic forcing
Bose-Einstein condensates: Static and dynamic properties
Ideal Bose gases: From statistical mechanics to number theory
Ultracold atoms in optical lattices
Bounds on energy dissipation in turbulent shear flow
Solid-state devices interacting with oscillating fields
Semiclassical analysis of periodically driven quantum systems
Atoms and molecules interacting with strong radiation pulses: The Floquet picture
Miscellaneous


Periodic Thermodynamics

  • M. Langemeyer and M. Holthaus:
    Energy flow in periodic thermodynamics
    Phys. Rev. E 89, 012101 (2014).
    arXiv:1401.0675

High-order perturbation theory for strongly correlated Boson systems

  • S. Sanders, C. Heinisch, and M. Holthaus:
    Hypergeometric analytic continuation of the strong-coupling perturbation series for the 2d Bose-Hubbard model
    EPL 111, 20002 (2015).
    arXiv:1503.04090

  • D. Hinrichs, A. Pelster, and M. Holthaus:
    Perturbative calculation of critical exponents for the Bose-Hubbard model
    Appl. Phys. B 113 (Special issue: Selected papers presented at the 2012 Spring Meeting
    of the Quantum Optics and Photonics section of the German Physical Society), 57 - 67 (2013).
    arXiv:1401.0680

  • N. Teichmann, D. Hinrichs, and M. Holthaus:
    Reference data for phase diagrams of triangular and hexagonal bosonic lattices
    EPL 91, 10004 (2010).
    arXiv:1007.0685

  • N. Teichmann, D. Hinrichs, M. Holthaus, and A. Eckardt:
    Process-chain approach to the Bose-Hubbard model: Ground-state properties and phase diagram
    Phys. Rev. B 79, 224515 (2009).
    arXiv:0904.0905
    Selected for the July 2009 issue of the Virtual Journal of Atomic Quantum Fluids

  • N. Teichmann, D. Hinrichs, M. Holthaus, and A. Eckardt:
    Bose-Hubbard phase diagram with arbitrary integer filling
    Phys. Rev. B 79, 100503(R) (2009).
    arXiv:0810.0643
    Selected for the March 15, 2009 issue of the Virtual Journal of Applications of Superconductivity

Fluctuating electromagnetic fields, near-field heat transfer, and related topics

  • F. Rüting, S.-A. Biehs, O. Huth, and M. Holthaus:
    Second-order calculation of the local density of states above a nanostructured surface
    Phys. Rev. B 82, 115443 (2010).
    arXiv:1103.3221

  • S.-A. Biehs, O. Huth, F. Rüting, and M. Holthaus:
    Spheroidal nanoparticles as thermal near-field sensors
    J. Appl. Phys. 108, 014312 (2010).
    arXiv:1103.4511

  • O. Huth, F. Rüting, S.-A. Biehs, and M. Holthaus:
    Shape-dependence of near-field heat transfer between a spheroidal nanoparticle and a flat surface
    Eur. Phys. J. Appl. Phys. 50, 10603 (2010).
    arXiv:1103.5039

  • D. Grieser, H. Uecker, S.-A. Biehs, O. Huth, F. Rüting, and M. Holthaus:
    Perturbation theory for plasmonic eigenvalues
    Phys. Rev. B 80, 245405 (2009).
    arXiv:1103.5212
    Selected for the December 21, 2009 issue of the Virtual Journal of Nanoscale Science & Technology

  • S.-A. Biehs, D. Reddig, and M. Holthaus:
    Thermal radiation and near field energy density of thin metallic films
    Eur. Phys. J. B 55, 237 - 251 (2007).
    arXiv:1103.3684

  • A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, and M. Holthaus:
    Near-field heat transfer in a scanning thermal microscope
    Phys. Rev. Lett. 95, 224301 (2005).
    arXiv:1103.3278

  • M. Janowicz, D. Reddig, and M. Holthaus:
    Quantum approach to electromagnetic energy transfer between two dielectric bodies
    Phys. Rev. A 68, 043823 (2003).

Bose-Einstein condensates: Coherent control by time-periodic forcing

  • B. Gertjerenken and M. Holthaus:
    N-coherence vs. t-coherence: An alternative route to the Gross-Pitaevskii equation
    Annals of Physics 362, 482 - 510 (2015).
    arXiv:1508.04117

  • B. Gertjerenken and M. Holthaus:
    Emergence and destruction of macroscopic wave functions
    EPL 111, 30006 (2015).
    arXiv:1507.07533

  • B. Gertjerenken and M. Holthaus:
    Quasiparticle tunneling in a periodically driven bosonic Josephson junction
    Phys. Rev. A 90, 053622 (2014).
    arXiv:1411.1632

  • B. Gertjerenken and M. Holthaus:
    Fluctuations of the order parameter of a mesoscopic Floquet condensate
    Phys. Rev. A 90, 053614 (2014).
    arXiv:1410.8008

  • B. Gertjerenken and M. Holthaus:
    Trojan Quasiparticles
    New J. Phys. 16, 093009 (2014).
    arXiv:1407.1217

  • E. Arimondo, D. Ciampini, A. Eckardt, M. Holthaus, and O. Morsch:
    Kilohertz-driven Bose-Einstein condensates in optical lattices
    Adv. At. Mol. Opt. Phys. 61, 515 - 547 (2012).
    arXiv:1203.1259

  • A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, and E. Arimondo:
    Exploring dynamic localization with a Bose-Einstein condensate
    Phys. Rev. A 79, 013611 (2009).
    arXiv:0812.1997
    A synopsis of this work has appeared in Physics - spotlighting exceptional research

  • A. Eckardt and M. Holthaus:
    Avoided-level-crossing spectroscopy with dressed matter waves
    Phys. Rev. Lett. 101, 245302 (2008).
    arXiv:0809.1032

  • A. Eckardt and M. Holthaus:
    Dressed matter waves
    J. Phys.: Conference Series 99, 012007 (2008).
    arXiv:0801.1378

  • A. Eckardt and M. Holthaus:
    AC-induced superfluidity
    Europhys. Lett. 80, 50004 (2007).
    arXiv:0709.0605

  • N. Teichmann, C. Weiss, and M. Holthaus:
    From many-body interaction to nonlinearity
    Nonlinear Phenomena in Complex Systems 9, 254 - 264 (2006).

  • A. Eckardt, C. Weiss, and M. Holthaus:
    Superfluid-insulator transition in a periodically driven optical lattice
    Phys. Rev. Lett. 95, 260404 (2005).
    arXiv:cond-mat/0601020

  • A. Eckardt, T. Jinasundera, C. Weiss, and M. Holthaus:
    Analog of photon-assisted tunneling in a Bose-Einstein condensate
    Phys. Rev. Lett. 95, 200401 (2005).
    arXiv:cond-mat/0601018

  • T. Jinasundera, C. Weiss, and M. Holthaus:
    Many-particle tunnelling in a driven Bosonic Josephson junction
    Chem. Phys. 322 (Special issue: "Real-Time Dynamics of Complex Quantum Systems"), 118 - 126 (2006).

  • M. Holthaus and S. Stenholm:
    Coherent control of the self-trapping transition
    Eur. Phys. J. B 20, 451 - 467 (2001).

  • M. Holthaus:
    Towards coherent control of a Bose-Einstein condensate in a double well
    Phys. Rev. A 64, 011601 (Rapid Communication), (2001).

Bose-Einstein condensates: Static and dynamic properties

  • V. V. Kocharovsky, Vl. V. Kocharovsky, M. Holthaus, C. H. Raymond Ooi, A. Svidzinsky, W. Ketterle, and M. O. Scully:
    Fluctuations in ideal and interacting Bose-Einstein condensates:
    From the laser phase transition analogy to squeezed states and Bogoliubov quasiparticles

    Adv. At. Mol. Opt. Phys. 53, 291 - 411 (2006).
    arXiv:cond-mat/0605507

  • C. Weiss, S.-A. Biehs, A. Eckardt, and M. Holthaus:
    Weakly interacting Bose gas: The role of residual interactions
    Laser Physics 15, 626 - 635 (2005).

  • D. Boers, C. Weiss, and M. Holthaus:
    Bogoliubov speed of sound for a dilute Bose-Einstein condensate in a 3d optical lattice
    Europhys. Lett. 67, 887 - 892 (2004).
    arXiv:cond-mat/0407617

  • A. Eckardt, C. Weiss, and M. Holthaus:
    Ground-state energy and depletions for a dilute binary Bose gas
    Phys. Rev. A 70, 043615 (2004).
    arXiv:cond-mat/0408533

  • C. Weiss, M. Block, D. Boers, A. Eckardt, and M. Holthaus:
    Ground-state energy of a weakly interacting Bose gas: Calculation without regularization
    Z. Naturforsch. 59a, 1 - 13 (2004).

  • J. Pade, M. Block, and M. Holthaus:
    s-wave pseudopotential for anisotropic traps
    Phys. Rev. A 68, 063402 (2003).

  • D. Boers and M. Holthaus:
    Canonical statistics of occupation numbers for ideal and weakly interacting Bose gases
    in "Dynamics and Thermodynamics of Systems with Long-Range Interactions",
    T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens, eds.,
    Lecture Notes in Physics 602, 332 - 368 (Springer Verlag, Berlin Heidelberg 2002).

  • M. Block and M. Holthaus:
    Pseudopotential approximation in a harmonic trap
    Phys. Rev. A 65, 052102 (2002).

Ideal Bose gases: From statistical mechanics to number theory

  • C. Weiss, S. Page, and M. Holthaus:
    Factorizing numbers with a Bose-Einstein condensate
    Physica A 341, 586 - 606 (2004).
    arXiv:cond-mat/0403295

  • C. Weiss, M. Block, M. Holthaus, and G. Schmieder:
    Cumulants of partitions
    J. Phys. A: Math. Gen. 36, 1827 - 1844 (2003).

  • C. Weiss and M. Holthaus:
    Asymptotics of the number partitioning distribution
    Europhys. Lett. 59, 486 - 492 (2002).
    arXiv:cond-mat/0206023

  • M. Holthaus, K.T. Kapale, and M.O. Scully:
    Influence of boundary conditions on statistical properties of ideal Bose-Einstein condensates
    Phys. Rev. E 65, 036129 (2002).

  • M. Holthaus, K.T. Kapale, V.V. Kocharovsky, and M.O. Scully:
    Master equation vs. partition function: Canonical statistics of ideal Bose-Einstein condensates
    Physica A 300, 433 - 467 (2001).

  • M. Holthaus and E. Kalinowski:
    The saddle-point method for condensed Bose gases
    Ann. Phys. (N.Y.) 276, 321 - 360 (1999).
    arXiv:cond-mat/9906092

  • M. Holthaus and E. Kalinowski:
    Universal renormalization of saddle-point integrals for condensed Bose gases
    Phys. Rev. E 60, 6534 - 6537 (1999).

  • S. Grossmann and M. Holthaus:
    From number theory to statistical mechanics: Bose-Einstein condensation in isolated traps
    Chaos, Solitons and Fractals 10, 795 - 804 (1999).

  • M. Holthaus, E. Kalinowski, and K. Kirsten:
    Condensate fluctuations in trapped Bose gases: Canonical vs. microcanonical ensemble
    Ann. Phys. (N.Y.) 270, 198 - 230 (1998).

  • S. Grossmann and M. Holthaus:
    Maxwell's Demon at work: two types of Bose condensate fluctuations in power-law traps
    Optics Express 1, 262 - 271 (1997).

  • S. Grossmann and M. Holthaus:
    Fluctuations of the particle number in a trapped Bose-Einstein condensate
    Phys. Rev. Lett. 79, 3557 - 3560 (1997).

  • S. Grossmann and M. Holthaus:
    Microcanonical fluctuations of a Bose system's ground state occupation number
    Phys. Rev. E 54, 3495 - 3498 (1996).

  • S. Grossmann and M. Holthaus:
    Lambda-Transition to the Bose-Einstein condensate
    Z. Naturforsch. 50a, 921 - 930 (1995).

  • S. Grossmann and M. Holthaus:
    On Bose-Einstein condensation in harmonic traps
    Phys. Lett. A 208, 188 - 192 (1995).

  • S. Grossmann and M. Holthaus:
    Das neue Gesicht der Bose-Einstein-Kondensation
    Phys. Bl. 51, 923 (1995) [Erratum: 51, 1108 (1995)].

  • S. Grossmann and M. Holthaus:
    Bose-Einstein condensation and condensate tunneling
    Z. Naturforsch. 50a, 323 - 326 (1995).

  • S. Grossmann and M. Holthaus:
    Bose-Einstein condensation in a cavity
    Z. Phys. B 97, 319 - 326 (1995).

Ultracold atoms in optical lattices

  • M. Holthaus:
    Tutorial: Floquet engineering with quasienergy bands of periodically driven optical lattices
    J. Phys. B 49, 013001 (2016).
    arXiv:1510.09042

  • S. Arlinghaus and M. Holthaus:
    ac Stark shift and multiphotonlike resonances in low-frequency-driven optical lattices
    Phys. Rev. A 85, 063601 (2012).
    arXiv:1205.5145

  • S. Arlinghaus and M. Holthaus:
    Controlled wave-packet manipulation with driven optical lattices
    Phys. Rev. A 84, 063617 (2011).
    arXiv:1112.3272

  • S. Arlinghaus and M. Holthaus:
    Generalized acceleration theorem for spatio-temporal Bloch waves
    Phys. Rev. B 84, 054301 (2011).
    arXiv:1108.1883

  • S. Arlinghaus and M. Holthaus:
    Driven optical lattices as strong-field simulators
    Phys. Rev. A 81, 063612 (2010).
    arXiv:1006.4067

  • S. Arlinghaus, M. Langemeyer, and M. Holthaus:
    Dynamic localization in optical lattices
    in: "Dynamical Tunneling - Theory and Experiment",
    S. Keshavamurthy and P. Schlagheck, eds.,
    pp. 289 - 310 (Taylor and Francis CRC, 2011).
    arXiv:1103.4293

  • D. J. Boers, B. Goedeke, D. Hinrichs, and M. Holthaus:
    Mobility edges in bichromatic optical lattices
    Phys. Rev. A 75, 063404 (2007).

  • M. Holthaus:
    Bloch oscillations and Zener breakdown in an optical lattice
    J. Opt. B: Quantum Semiclass. Opt. 2, 589 - 604 (2000).

  • K. Drese and M. Holthaus:
    Exploring a metal-insulator transition with ultracold atoms in standing light waves?
    Phys. Rev. Lett. 78, 2932 - 2935 (1997).

  • K. Drese and M. Holthaus:
    Ultracold atoms in modulated standing light waves
    Chem. Phys. 217 (Special issue: "Dynamics of driven quantum systems"), 201 - 219 (1997).

Bounds on energy dissipation in turbulent shear flow

  • R. Nicodemus, S. Grossmann, and M. Holthaus:
    Towards lowering dissipation bounds for turbulent flows
    Eur. Phys. J. B 10, 385 - 396 (1999).

  • R. Nicodemus, S. Grossmann, and M. Holthaus:
    The background flow method. Part 2. Asymptotic theory of dissipation bounds
    J. Fluid Mech. 263, 301 - 323 (1998).

  • R. Nicodemus, S. Grossmann, and M. Holthaus:
    The background flow method. Part 1. Constructive approach to bounds on energy dissipation
    J. Fluid Mech. 263, 281 - 300 (1998).

  • R. Nicodemus, S. Grossmann, and M. Holthaus:
    Variational bound on energy dissipation in plane Couette flow
    Phys. Rev. E 56, 6774 - 6786 (1997).
    arXiv:cond-mat/9804274

  • R. Nicodemus, S. Grossmann, and M. Holthaus:
    Variational bound on energy dissipation in turbulent shear flow
    Phys. Rev. Lett. 79, 4170 - 4173 (1997).
    arXiv:cond-mat/9804275

  • R. Nicodemus, S. Grossmann, and M. Holthaus:
    Improved variational principle for bounds on energy dissipation in turbulent shear flow
    Physica D 101, 178 - 190 (1997).
    arXiv:cond-mat/9804272

  • T. Gebhardt, S. Grossmann, M. Holthaus, and M. Löhden:
    Rigorous bound in the plane shear flow dissipation rate
    Phys. Rev. E 51, 360 - 365 (1995).

Solid-state devices interacting with oscillating fields

  • M. Holthaus:
    Coherent control of quantum localization
    in: "Coherent Control in Atoms, Molecules, and Semiconductors",
    W. Pötz and W.A. Schroeder, eds.,
    pp. 171 - 182 (Kluwer, Dordrecht, 1999).

  • M. Holthaus:
    Zwischen Quantenoptik und Festkörperphysik: Lokalisierungskontrolle durch periodischen Antrieb
    Phys. Bl. 54, 643 - 646 (1998)

  • K. Drese and M. Holthaus:
    Anderson localization in an ac-driven two-band model
    J. Phys.: Condens. Matter 8, 1193 - 1206 (1996).

  • M. Holthaus and D.W. Hone:
    Localization effects in ac-driven tight-binding lattices
    Phil. Mag. B 74, 105 - 137 (1996).

  • M. Holthaus, G.H. Ristow, and D.W. Hone:
    Random lattices in combined ac and dc electric fields: Anderson vs. Wannier-Stark localization
    Europhys. Lett. 32, 241 - 246 (1995).

  • M. Holthaus, G.H. Ristow, and D.W. Hone:
    ac-field-controlled Anderson localization in disordered semiconductor superlattices
    Phys. Rev. Lett. 75, 3914 - 3917 (1995).

  • M. Holthaus and D.W. Hone:
    ac Stark effects and harmonic generation in periodic potentials
    Phys. Rev. B 49, 16605 - 16608 (1994).

  • D.W. Hone and M. Holthaus:
    Locally disordered lattices in strong ac electric fields
    Phys. Rev. B II 48, 15123 - 15131 (1993).

  • M. Holthaus and D. Hone:
    Quantum wells and superlattices in strong time dependent fields
    Phys. Rev. B 47, 6499 - 6508 (1993).

  • M. Holthaus:
    The quantum theory of an ideal superlattice responding to far-infrared laser radiation
    Z. Phys. B 89, 251 - 259 (1992).

  • M. Holthaus:
    Pulse-shape controlled tunneling in a laser field
    Phys. Rev. Lett. 69, 1596 - 1599 (1992).

  • M. Holthaus:
    Collapse of minibands in far-infrared irradiated superlattices
    Phys. Rev. Lett. 69, 351 - 354 (1992).

Semiclassical analysis of periodically driven quantum systems

  • M.E. Flatte and M. Holthaus:
    Classical and quantum dynamics of a periodically driven particle in a triangular well
    Ann. Phys. (N.Y.) 245, 113 - 146 (1996).

  • M. Holthaus:
    On the classical-quantum correspondence for periodically time dependent systems
    Chaos, Solitons and Fractals 5 (Special issue: "Quantum chaos: present and future"), 1143 - 1167 (1995).

  • M. Holthaus and M.E. Flatte:
    Subharmonic generation in quantum systems
    Phys. Lett. A 187, 151 - 156 (1994).

  • M. Holthaus:
    Strongly driven semiconductor quantum wells - new testing ground for "quantum chaos"?
    Prog. Theor. Phys. Suppl. 116, 417 - 423 (1994).

  • K. Dietz, J. Henkel, and M. Holthaus:
    Transitions induced by separatrix crossing
    Phys. Rev. A 45, 4960 - 4968 (1992).

  • J. Henkel and M. Holthaus:
    Classical resonances in quantum mechanics
    Phys. Rev. A 45, 1978 - 1986 (1992).

  • H.P. Breuer and M. Holthaus:
    A semiclassical theory of quasienergies and Floquet wave functions
    Ann. Phys. (N.Y.) 211, 249 - 291 (1991).

  • H.P. Breuer, K. Dietz, and M. Holthaus:
    On the classical dynamics of strongly driven anharmonic oscillators
    Physica D 46, 317 - 341 (1990).

Atoms and molecules interacting with strong radiation pulses: The Floquet picture

  • K. Drese and M. Holthaus:
    Floquet theory for short laser pulses
    Eur. Phys. J. D 5, 119 - 134 (1999).

  • K. Drese and M. Holthaus:
    Perturbative and nonperturbative processes in adiabatic population transfer
    Eur. Phys. J. D 3, 73 - 86 (1998).

  • M. Holthaus:
    A nonperturbative mechanism for fast, selective excitation of molecular states
    in: "Femtosecond Chemistry", J. Manz and L. Wöste, eds., Vol.2, pp. 713 - 730 (Verlag Chemie, Weinheim, 1995).

  • M. Holthaus and B. Just:
    Generalized pi-pulses
    Phys. Rev. A 49, 1950 - 1960 (1994).

  • H.P. Breuer and M. Holthaus:
    Adiabatic control of molecular excitation and tunneling by short laser pulses
    J. Phys. Chem. 97, 12634 - 12643 (1993).

  • H.P. Breuer, K. Dietz, and M. Holthaus:
    Berry's phase in quantum optics
    Phys. Rev. A 47, 725 - 728 (1993).

  • H.P. Breuer, K. Dietz, and M. Holthaus:
    A remark on the Kramers-Henneberger transformation
    Phys. Lett. A 165, 341 - 346 (1992).

  • H.P. Breuer, K. Dietz, and M. Holthaus:
    Selective excitation of the HF molecule: continuum and pulse shape effects
    Phys. Rev. A 45, 550 - 552 (1992).

  • H.P. Breuer, K. Dietz, and M. Holthaus:
    Selective excitation of molecular vibrations by interference of Floquet states
    J. Phys. B 24, 1343 - 1357 (1991).

  • H.P. Breuer and M. Holthaus:
    Excitation mechanisms for hydrogen atoms in strong microwave fields
    J. Phys. II 1, 437 - 449 (1991).

  • H.P. Breuer, K. Dietz, and M. Holthaus:
    Highly excited hydrogen atoms in strong microwave fields
    Z. Phys. D 18, 239 - 248 (1991).

  • H.P. Breuer, K. Dietz, and M. Holthaus:
    Adiabatic evolution, quantum phases, and Landau-Zener transitions in strong radiation fields
    Radiation Effects and Defects in Solids 122/123, 91 - 106 (1991).

  • H.P. Breuer, K. Dietz, and M. Holthaus:
    Transport of quantum states of periodically driven systems
    J. Phys. France 51, 709 - 722 (1990).

  • H.P. Breuer, K. Dietz, and M. Holthaus:
    Adiabatic motion and the structure of quasi-energy surfaces of periodically driven quantum systems
    Nuovo Cimento 105 B, 53 - 63 (1990).

  • H.P. Breuer and M. Holthaus:
    Quantum phases and Landau-Zener transitions in oscillating fields
    Phys. Lett. A 140, 507 - 512 (1989).

  • H.P. Breuer, K. Dietz, and M. Holthaus:
    Low-frequency ionisation of excited hydrogen atoms: The Floquet picture
    J. Phys. B 22, 3187 - 3196 (1989).

  • H.P. Breuer and M. Holthaus:
    Adiabatic processes in the ionization of highly excited hydrogen atoms
    Z. Phys. D 11, 1 - 14 (1989).

  • H.P. Breuer, K. Dietz, and M. Holthaus:
    Strong laser fields interacting with matter
    Z. Phys. D 10, 13 - 26 (1988).

  • H.P. Breuer, K. Dietz, and M. Holthaus:
    The role of avoided crossings in the dynamics of strong laser field - matter interactions
    Z. Phys. D 8, 349 - 357 (1988).

Miscellaneous

  • M. Janowicz and M. Holthaus:
    Sub- and superluminal kink-like waves in the kinetic limit of Maxwell-Bloch equations
    J. Phys. A: Math. Theor. 44, 025301 (2011).

  • K. Drese and M. Holthaus:
    Phase diagram for a modified Harper model
    Phys. Rev. B 55, R14693 - R14696 (1997).

  • M. Holthaus, C.S. Kenney, and A.J. Laub:
    Numerical methods for studying parameter dependence of solutions to Schrödinger's equation
    in: "Differential Equations, Dynamical Systems, and Control Science: A Festschrift in Honor of Lawrence Markus",
    K.D. Elworthy, W.N. Everitt, and E.B. Lee, eds.,
    Lecture Notes in Pure and Applied Mathematics 152, 101 - 114 (Marcel Dekker, New York, 1993).

  • H.P. Breuer, K. Dietz, M. Holthaus, and Th. Millack:
    On the quantum field theory of photoionization and electron scattering reactions on atoms
    Z. Phys. D 7, 9 - 21 (1987).


Last updated: November 27, 2015