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In this work we focus on the surface roughness correction to the near-field radiative heat transfer between a
nanoparticle and a material with a rough surface utilizing a direct perturbation theory up to second order in the
surface profile. We discuss the different distance regimes for the local density of states above the rough
material and the heat flux analytically and numerically. We show that the heat transfer rate is larger than that
corresponding to a flat surface at short distances. At larger distances it can become smaller due to surface
polariton scattering by the rough surface. For distances much smaller than the correlation length of the surface
profile, we show that the results converge to a proximity approximation, whereas in the opposite limit the
rough surface can be replaced by an equivalent surface layer.
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I. INTRODUCTION

Recently, the near-field radiative heat transfer has at-
tracted a lot of theoretical and experimental attention.1–3 It
was predicted theoretically4 and shown experimentally5–8

that the heat flux for distances much smaller than the thermal
wavelength �th=�c / �kBT� can be much greater than that pre-
dicted by Planck’s law, where � is Planck’s constant, kB is
Boltzmann’s constant, c is the velocity of light in vacuum,
and T is the temperature. This unusual property might, for
example, be exploited for thermophotovoltaics9–12 and near-
field scanning thermal microscopy.13,14

It is common knowledge that the radiative properties of a
material depend not only on the material parameters but also
on the surface roughness.15 While the effect on far-field
properties has been widely studied,16 the impact of surface
roughness on near-field heat transfer has not been considered
so far. From the experimentalist’s point of view, at least an
estimate of the surface roughness correction is desirable
since one is confronted with a certain degree of surface
roughness in all experimental setups.

In this work we will study the near-field heat transfer
between a nanoparticle considered to be an electric dipole
and a material with a rough surface. Within this model the
change in the local density of states �LDOS� above the ma-
terial due to the surface roughness completely causes the
change in the heat flux. Since, the near-field heat transfer
between two semi-infinite bodies is also largely determined
by the LDOS, we think that our results are not only restricted
to the here discussed geometry but can also be utilized to get
a rough estimate of the impact of surface roughness for con-
figurations used in recent experimental setups.5–8 In addition,
the LDOS also plays a fundamental role for other physical
phenomena as it determines, for instance, the lifetime of at-
oms and molecules near a surface so that the here given
results for the LDOS have a wider range of application.

The paper is organized as follows: In Sec. II we give a
short description of the dipole model of near-field heat trans-
fer. In Sec. III we introduce the perturbation result for the
mean LDOS, the key quantity for understanding the rough-
ness correction to the mean heat flux which is itself dis-

cussed in Sec. IV. In Sec. V we derive approximations for the
small and the large distance regime. Finally, in Sec. VI we
study the roughness correction to the LDOS numerically.

II. RADIATIVE HEAT TRANSFER

We consider the situation depicted in Fig. 1. A nanopar-
ticle with a polarizability � in local thermal equilibrium at
temperature TP is placed at rP near a dielectric half space
with a given permittivity �. As discussed in Refs. 17 and 18
the multiple scattering between the nanoparticle and the sur-
face can be neglected. We assume that this dielectric is in
local thermal equilibrium at a temperature TB�TP. The in-
terface separating the dielectric from the vacuum is described
by the surface profile S�x�−z=0 with x= �x ,y�.

Now, as far as the radius R of the nanoparticle is smaller
than the thermal wavelength �th and the distance d between
the dielectric body and the particle can be assumed to be
large, i.e., �th�R and d�R, the energy-transfer rate between
the particle and the dielectric body due to radiation can be
expressed within the dipole model as �see Refs. 2 and 3 and
references therein�

�PP↔B� = �
0

�

d	2	���	��
�	,TP� − 
�	,TB��DE�	,rP�

�1�

with


�	,T� =
�	

e�	� − 1
, �2�

where �= �kBT�−1. Here, the spectral power absorbed by the
nanoparticle2,3,19 is given by the term
���	�DE�	 ,rP�
�	 ,TB�, i.e., it is proportional to the imagi-
nary part of the polarizability �� of the particle and propor-
tional to the electric energy density which is given by the
product DE�	 ,rP�
�	 ,TB� of the electric LDOS above the
dielectric medium and the mean energy of a harmonic oscil-
lator 
�	 ,T�. On the other hand, the power emitted by the
particle and absorbed within the bulk medium is proportional
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to ���	�DE�	 ,rP�
�	 ,TP�. We point out that the above
given formula has to be augmented by its magnetic counter-
part when considering metallic materials as discussed in Ref.
20.

Within this work we will use the expression of the LDOS

DE�	,r� =
	

�c2 Im Tr GE�r,r� , �3�

as defined in Ref. 21. Using Eq. �3� in Eq. �1� corresponds to
a situation where the bulk and its surrounding are at ambient
temperature TB, whereas the nanoparticle is heated or cooled
with respect to TB.

III. LOCAL DENSITY OF STATES

A. Stochastic surface roughness

In this work, we concentrate on the special case of a sto-
chastic surface profile S described as a stochastic Gaussian
process with mean value and correlation function given by

�S�x��p = 0, �4�

�S�x�S�x���p = 
2W��x − x��� . �5�

The brackets � � �p stand for the average over an ensemble of
realizations of the surface profile S�x�; 
 is the rms height of
the surface profile. The correlation function W��x−x��� is
here assumed to be given by a Gaussian

W��x − x��� = e−�x − x��2/a2
, �6�

introducing the transverse correlation length a.

For the Fourier component S̃��� of the surface-profile
function one obtains

�S̃����p = 0, �7�

�S̃���S̃�����p = �2��2
2
�� + ���g��� �8�

with Dirac’s delta function 
��+��� and the surface rough-
ness power spectrum

g��� =� d2xW��x��e−i�·x = �a2e−�2a2/4. �9�

B. Perturbation expansion of the LDOS

In order to determine the perturbation expansion of the
LDOS in Eq. �3�, we expand the Green’s dyadic GE with
respect to the surface profile up to second order.22 We follow
Ref. 23, where one can find a procedure for determining the
first-order Green’s dyadic. The explicit second-order form is
given in Appendix A. A detailed discussion of the validity of
the perturbation theory is given in Ref. 23. In summary, the
perturbation ansatz is valid as far as the surface height 
 is
the smallest length scale of the problem, i.e., 

�min	z ,a ,�th
.

Inserting the Green’s function up to second order given in
Eq. �A1� into Eq. �3�, we find for the LDOS up to second
order after ensemble average,

�DE�0�−�2�
�	,r��p

=
	

�2c2��
��k0

d�
�

4�r
�1 + hs Re��rs

�0�−�2��pe2i�rz��

+ �
��k0

d�
�e−2�z

4�
�hs Im��rs

�0�−�2��p�� + �s ↔ p�� , �10�

where hs=1 and hp= �2�2−k0
2� /k0

2. The first term yields the
propagating mode contribution, i.e., for ��k0 with �r

=
k0
2−�2 purely real, whereas the second term gives the

contribution due to evanescent waves, i.e., ��k0 with �r
= i� purely imaginary. The mean reflection coefficient up to
second order �rs/p

�0�−�2��p can be written as a sum of the usual
Fresnel coefficient rs/p and a surface roughness correction

�rs/p
�0�−�2��p = rs/p − 2i�r�Ds/p

0 �2Ms/p, �11�

where

Ds
0 =

i

�r + �t
and Dp

0 =
i�

�r� + �t
�12�

with �t=
k0
2�−�2. The so-called proper self-energy Ms/p is

defined in Appendix B. Furthermore, one can write the ex-
pression for the proper self-energy Ms/p as a sum of two
contributions Ms/p,0 originating from terms due to a second-
order scattering process and Ms/p,1 originating from terms
due to two successive first-order scattering processes �see
Fig. 2�.

IV. RADIATIVE HEAT TRANSFER BETWEEN A
NANOPARTICLE AND A ROUGH SURFACE

With the above given relations we can study the radiative
heat transfer between a spherical nanoparticle and a semi-
infinite dielectric body with a rough surface formally given
by Eq. �1� setting the nanoparticle at position rP= �0,0 ,d�.
For describing the absorptivity of the nanoparticle with ra-
dius R we utilize the polarizability given as

��	� = 4�R3��	� − 1

��	� + 2
. �13�

Here, we employ the material properties for SiC from Ref.
24 for numerical evaluation of Eq. �1� using Eq. �10� and

R

rP

x

z

d

TB

TP

S(x)

FIG. 1. Sketch of the configuration considered here.
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determine the surface roughness correction defined by

�P = 100
�P�0�−�2��p − P�0�

P�0� . �14�

We have checked that P�0� gives the same result as in Ref. 17
when choosing the same radius. �Note that �P itself does not
depend on R since �P�0�−�2��p�R3 and P�0��R3.�

Let us first turn to the distance dependence of the heat
flux. A plot of �P over the distance considering only evanes-
cent modes, with 
=5 nm and a=200 nm is shown in Fig.
3. The temperature of the dielectric is assumed to be 0 K,
whereas the temperature of the nanoparticle is set to 300 K.
From formula �1� it is clear that �apart from a sign for P� one
gets the same result for �P when interchanging the tempera-
tures. As will be shown later, the proximity approximation
�PA�

�P�p
PA = P�0��1 + 6


2

d2� �15�

can be derived in the small distance regime with 
�d�a.
Note that �P is always positive and independent from T in
that limit even if � depends on T. In the opposite limit with
d�a, we can also derive a large distance approximation
�LDA� �see Eqs. �22� and �23��.

It can be seen, that �P converges to the approximations
for large and small distances. For distances slightly greater
than the small distance regime well described by the PA
result the surface roughness correction becomes much
greater than predicted by the PA. For distances between
1–10 �m it can be seen that �P becomes negative. Now, in
this distance regime already the propagating modes start to
dominate the heat transfer. It turns out that for the propagat-
ing modes the surface roughness correction is very small
compared to that of the evanescent modes. It follows that �P
for evanescent and propagating modes becomes also very
small in the distance regime 1–10 �m as is illustrated in
Fig. 4. It can also be seen that due to the competition of the
roughness correction of the evanescent and propagating
modes, the overall correction to the heat transfer �P be-
comes more oscillatory in that distance regime. Nevertheless,
corrections on the order of 10% can arise for distances
smaller than 100 nm but one has to keep in mind that the
theory used here is only applicable for d�
 and d�R.
Therefore, using 
=5 nm and R=5 nm it can be estimated
that the theory is only valid for distances d greater than
�50 nm.

Since we have determined P perturbatively with respect
to the surface profile it is clear that to second order �P is
proportional to 
2. On the other hand, the dependence of �P
on the correlation length a is not obvious. We find that �P is
approximately proportional to a−1 in the large distance re-
gime �for the here used parameters� what might be seen in
Fig. 5 considering only evanescent modes for a=100, 200,
and 500 nm.

In order to understand the roughness correction to the heat
flux, a deeper understanding of the roughness correction to
the LDOS is required. Therefore, we will discuss the LDOS
in more detail in the following.

κ

κ − κ(2)
S ( )

κ = κ
κ − κ(1)

S ( )κ − κ(1)
S ( )

κ = κ

κ

κ(a)

(b)

FIG. 2. Simple sketch of the scattering processes �a� due to
Ms/p,0 and �b� due to Ms/p,1. After averaging the translational sym-
metry is restored so that � is the same before and after the scatter-
ing with the rough surface. Mathematically, this property follows
directly from the statistical properties of the Gaussian surface

roughness, i.e., �S̃�2���−����p�
��−��� and �S̃�1���−���S̃�1����
−����p�
��−���.
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FIG. 3. �Color online� Plot of the modulus of �P for evanescent
modes over the distance for SiC setting TB=0 K and TP=300 K
for a rough surface with 
=5 nm and a=200 nm. The red part of
the curve �for d�2.8�m� indicates positive and the blue one �for
d�2.8�m� negative values. The PA and the LDA are included for
comparison.
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FIG. 4. �Color online� As Fig. 3 but for evanescent and propa-
gating modes.
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V. APPROXIMATIONS OF THE LDOS FOR SMALL AND
LARGE DISTANCES

The key quantities for the LDOS are the reflection coef-
ficients in Eq. �11�. Here we will derive some approxima-
tions of the proper self-energy Ms/p first. From these expres-
sions one can get the corresponding approximation for the
LDOS by using Eqs. �10� and �11�.

Before we derive the small and large distance approxima-
tion for the proper self-energy Ms/p we first implement the
following approximation: For frequencies relevant at room
temperature, i.e., 	�1014 s−1, we have �k0


�a /2��1, i.e., a
is much smaller than the skin depth ds, as far as the correla-
tion length a is small enough. Considering SiC, this relation
is well fulfilled for most frequencies within the range 3.7
�1013–2�1014 s−1 for values of a smaller than 500 nm.
Therefore, we concentrate here on the limit a�ds only �see
Appendix C� while one can determine the opposite limit a
�ds with a similar procedure. For the latter limit we just
state the results in Appendix D.

A. Small distance regime (�™z™a)

In the limit of small distances z it is seen from Eq. �10�
that the main contribution comes from wave vectors �
�1 /z. In the regime a�z ��a�1�, the terms Ms/p,1 become
negligible compared to Ms/p,0. This is due to the fact that for
�a�1 the proper self-energy contributions �Ms/p,1� are pro-
portional to 1 /� or �, respectively, because the Bessel func-
tions are in this limit approximated by exp��2 /8� /�. On the
other hand, �Ms/p,0� is for large wave vectors proportional to
� or �3 so that �Ms/p,1� / �Ms/p,0��1 /�2. This means that in the
near-field regime the surface roughness correction solely
stems from Ms/p,0 in Eqs. �B10� and �B12�, i.e., from that
term which originates from one second-order scattering pro-
cess �see also Fig. 2�. Since the term Ms/p,1 originating from
terms due to two successive first-order scattering processes
including processes involving the excitation of surface
modes with �� ,	� followed by scattering into another sur-
face mode ��� ,	� as an intermediate state which is then
scattered back into the initial state with �� ,	� becomes neg-
ligible, we can formally conclude that these processes are
irrelevant for z�a. This is very intuitive since the wave-

length of the surface modes becomes much smaller than the
correlation length. Within this limit the excited surface
modes can follow the perturbed surface adiabatically without
being scattered. Hence, for z�a it suffices to consider Ms/p,0
only. Inserting Ms/p,0 into the mean reflection coefficient in
Eq. �11� gives for the evanescent near-field regime with �
�k0

�rs/p
�0�−�2��p � r̃s/p�1 + 2��
�2� , �16�

for �a�1 or z�a, utilizing the quasistatic approximations
for the reflection coefficients

r̃s =
k0

2

4�2 �� − 1� and r̃p =
� − 1

� + 1
. �17�

From the above relations we can infer that the surface rough-
ness correction for very small distances does not depend on
a. The expressions in Eq. �16� can also be derived for a
�ds.

By inserting Eqs. �16� and �17� into the corresponding
formula for the LDOS in the quasistatic limit

�DE�0�−�2�
�p �

	

�2c2�
0

�

d�e−2�z �2

2k0
2 Im���rp

�0�−�2���p� , �18�

which follows from Eq. �10� when assuming ��k0, we find

�DE�z��p
PA � DE�0��1 + 6


2

z2 � . �19�

From this result the approximation for the radiative heat
transfer in Eq. �15� follows easily.

Now, exactly the same result can be obtained with the
so-called PA, which holds in the quasistatic limit for z�a
and z�
 which was, for example, used to determine the
surface roughness contribution to the Casimir force25,26 and
has recently been employed to the near-field radiative heat
transfer.27 It amounts to replace the rough surface by a hori-
zontal plane at a random height z=S�x� followed by the en-
semble average. Hence, the LDOS reads

�DE�z��p � �DE�0�
�z − S�x���p

= DE�0�
�z� +

1

2

�2

�z2DE�0�

2 + O�4� . �20�

Utilizing the expression for the LDOS in the quasistatic
limit21

DE�0�
�

1

4

1

�k0z�3

	2

�2c3

��

�� + 1�2
, �21�

one retrieves the PA in Eq. �19� when considering terms up
to second order only. Since the zeroth-order LDOS is pro-
portional to 1 /z3, it is clear that the contributions for planes
at distances smaller than z will give a larger value than those
at distances larger than z so that after averaging the overall
roughness correction is positive. Regarding only second-
order terms it is also clear that this correction is proportional
to 
2.
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FIG. 5. �Color online� As Fig. 3 using a=100, 200, and 500
nm.
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B. Large distance regime (�thšzša and a™ds)

When considering the evanescent contribution to the heat
transfer in the large distance regime with d�a one is facing
a situation as sketched in Fig. 6�a�. At room temperature
�th�10 �m so that the evanescent regime is restricted to
d��th=10 �m. Therefore, this large distance regime is only
applicable for surface profiles with a correlation length a
much smaller than 10 �m and a rms 
�a. The same is true
for the LDOS at z�a. On the other hand, for very small
temperatures of about 5 K, the thermal wavelength is about
�th�0.46 mm. Hence, for low-temperature experiments as
the measurement of spin-flip lifetimes in Refs. 28 and 29,
this large distance regime can be applied to a much wider
range of surface roughness parameters, distances and nano-
particle radii.

Considering the large distance limit �a�1 in Eq. �C1�,
we find for the lowest nonvanishing order

Ms,1 � − �k0
�2�� − 1�2

�

2

1

a

1

� + 1
�22�

and with Eq. �C4�

Mp,1 �

�

2
�k0
�2 �� − 1�2

��� + 1�
1

a
�1 +

�2

k0
2

2� − 1

�
� . �23�

Obviously, Ms/p,1 are proportional to a−1. Therefore, for large
distances for which �Ms/p,1�� �Ms/p,0� is fulfilled, the second-
order correction to the LDOS will be inversely proportional
to the correlation length if a�ds. The condition �Ms/p,1�
� �Ms/p,0� is fulfilled for the p-polarized modes in the here
given limit �a�1, whereas for the s-polarized modes, this is
only true if 2�ta��+1��
�. In addition, the approximate
expressions in Eqs. �22� and �23� have the denominator
�+1 indicating a strong contribution for surface resonances
with ��=−1 and ���0. Therefore, for frequencies near the
surface resonance frequency and for distances z�a the
proper self-energy Ms/p in the expressions for the reflection
coefficient in Eq. �11� can be replaced by Eqs. �22� and �23�
yielding the LDA.

As far as one considers correlation lengths a much
smaller than the wavelength inside the medium � / �
��, one
can apply the concept of homogenization30 by replacing the
surface roughness by an equivalent surface layer with an
effective permittivity. In the near-field regime, this condition

is fulfilled if �a�1 or a�z, respectively. Following the ap-
proach of Rahman and Maradudin31,32 we replace the rough
surface in the limit of large distances with z�a and for a
�ds by a thin equivalent surface layer as depicted in Fig. 6
ranging from z=−�L to �1−��L with �� �0,1�. The permit-
tivity �L of that layer is considered to be 0.5��+1�, i.e., the
average of the permittivity of vacuum and the dielectric me-
dium. The reflection coefficient for such a layered geometry
with �1=�, �2=�L, and �3=1 is in the quasistatic limit
���k0�

rs/p
L � e2��1−��L rs/p

32 + rs/p
21 e−2�L

1 + rs/p
32 rs/p

21 e−2�L . �24�

Considering first p-polarized modes we insert the electro-
static expressions for the Fresnel coefficients

rp
32 �

�L − 1

�L + 1
and rp

21 �
� − �L

� + �L
�25�

and expand the reflection coefficient for the layered system
with respect to the thickness L, which is thought to be small,
yielding

rp
L �

� − 1

� + 1
+ �L

�� − 1�
�� + 1�3 �− 2��1 + ��2 + 2�2 + � + 1� .

�26�

Now, we want to compare �rp
L=rp

L−rp with the result of
the LDA. Inserting Eq. �23� into the expression for the mean
reflection coefficients in Eq. �11� gives for the quasistatic
limit ���k0�

��rp
�0�−�2��p = �rp

�0�−�2��p − rp � 
�
�
2

a

�� − 1�2

�� + 1�3 �2� − 1� .

�27�

In order to get a relation between L and �, we compare the
leading term in � for 
rp

L of the layered geometry with the
surface roughness correction. This gives

�1 − ��L =

�
2

a
. �28�

Obviously, the choice of the parameters � and L is ambigu-
ous. This ambiguity is resolved in Ref. 31 when further con-
sidering the transmitted field component for the equivalent
layer and the corresponding perturbative result. From this,
Rahman and Maradudin find L=3
�
2 /a. Using this result
in Eq. �28� gives �=2 /3 as was also found by Rahman and
Maradudin in Ref. 31. Hence, the surface roughness can be
mimicked by a small layer with a thickness of order 
2 /a
which is slightly shifted into the vacuum region with respect
to z=0 so that the effective distance from the surface be-
comes z−L /3. It follows that for distances z�a the evanes-
cent part of the LDOS and of the heat transfer, which have a
monotonous decay with z, will be slightly bigger than that of
a flat surface and proportional to a−1.

The same considerations can be made for the s-polarized
modes yielding the results

(1 − ) L

Lα

d

ε

0.5 ( + 1)ε

z

α

(a) (b)

FIG. 6. �a� Sketch of the physical situation encountered in the
large distance regime for the heat transfer and �b� the replacement
of the rough surface by an equivalent layer for surface roughness to
determine the LDOS in that regime.
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�rs
L �

k0
2L

4�
�1 − �� �1 − 2�� �29�

in the quasistatic regime, which can be compared to the cor-
responding correction to the mean reflection coefficient �by
inserting Eq. �22� into Eq. �11��

��rs
�0�−�2��p � − �k0
�2
�

1

�a

1

4

�� − 1�2

�� + 1�
. �30�

Comparing the leading-order term of 
rs
L and 
�rs

�0�−�2��p in �
gives

�1 − 2��L =

�
2

a
. �31�

Again, the choice of � and L is ambiguous. Using again the
results for L from Ref. 31 gives �=1 /3. Therefore, we get a
similar result as for the p-polarized modes.

As it might be shown in the next section, in the large
distance regime, the roughness plays a significant role only
at the surface polariton resonance, i.e., for 	s such that
Re���	s��+1�0 and Im���	s���0. This is clear when not-
ing the resonant denominator 1 / ��+1�3 in Eq. �27�. Hence,
we expect a significant modification of the LDOS and there-
fore also of the lifetime of an emitter whose frequency is
close to 	s. On the other hand, for the near-field heat transfer
one has to sum up all contributions over the spectrum close
to the thermal frequency so that one can in general expect
that the correction is in this case small.

Finally, we note that, although the physics is different, the
effect of roughness on heat transfer is the same for evanes-
cent and propagating waves. The roughness can be modeled
by an effective layer with intermediate optical properties. In
both cases, it results in a larger transmission.

VI. NUMERICAL RESULTS FOR THE LDOS

A. Propagating modes

First, we discuss some numerical results for the propagat-
ing modes using the material parameters for SiC from Ref.
24. In Fig. 7, we show a plot of the deviation of reflectivity
from Eq. �11� defined as

�Rs/p = 100
��rs/p

�0�−�2��p�2 − �rs/p�2

�rs/p�2
�32�

for s and p polarization for ��k0 choosing a rms of 

=5 nm and a correlation length of a=200 nm. Furthermore,
the plot is restricted to frequencies around the surface pho-
non polariton resonance 	s=1.787�1014 s−1 within the rest-
strahlen band, i.e., 	t�	�	l, where 	l=1.827�1014 s−1

and 	t=1.495�1014 s−1 are the frequencies of the LO and
TO phonons in SiC, respectively. It can be seen that the
correction is small and negative in this frequency range. For
frequencies around the surface phonon frequency one finds a
relatively large negative correction �but still smaller than
1%� for both polarizations. Hence, the roughness correction
to the LDOS for propagating modes will be very small as
well.

The surface roughness allows for coupling of incident
propagating waves with surface polaritons.33–35 Hence, for
�	 ,�� for which the conditions for coupling of surface po-
laritons with propagating modes are met, the reflectivity will
decrease, i.e., �Rs/p is negative since only a small fraction of
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FIG. 7. �Color online� Plot of �Rs/p as defined in Eq. �32� for �a�
s- and �b� p-polarized modes using 
=5 nm and a=200 nm.
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FIG. 8. �Color online� Illustration of the excitation of surface
polaritons by s-polarized light in the � plane �dashed line
=dispersion relation of the surface phonon polariton, gray circle
=propagating waves with ��k0�: an s-polarized wave with �i

= �ki ,0� and an electric field in y direction. Due to a first scattering
process labeled as 1 with the rough surface the surface power spec-
trum provides the necessary extra momentum ��i−�sp� to match the
phase with the surface polariton with wave vector �sp. The incom-
ing s-polarized wave has an electric field component in the direc-
tion of �sp so that it can excite the surface polariton. Due to the
second scattering process 2 the surface power spectrum again pro-
vides the necessary extra momentum −��i−�sp� resulting in a scat-
tered s-polarized wave with �=�i.
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the excited surface mode will be reradiated. This surface
wave mediated decrease in the reflectivity can be seen for
both s and p polarizations.

The possibility of exciting surface polaritons with
s-polarized light needs some explanation since after taking
the ensemble average, the rough surface has the same sym-
metries as a flat surface for which surface polaritons can be
excited with p-polarized light only. On the other hand, for
surfaces with a grating which breaks the translational and
rotational symmetry, it is known that36,37 s-polarized waves
can excite surface polaritons. In this case, the grating pro-
vides the extra momentum for matching the phase of the
incoming light with that of the surface polariton. Addition-
ally, the incoming wave must have an electric field vector
component parallel to the surface phonon polariton wave
vector. When these two conditions are met,36,37 an
s-polarized wave can excite surface polaritons. Now, for a
rough surface the translational and rotational symmetries are
also broken so that an s-polarized wave should be able to
excite surface polaritons. An example of such a scattering
process is illustrated and discussed in Fig. 8.

B. Evanescent modes

Now, we turn to the evanescent modes. According to Eq.
�10�, we are interested in Im�r�. In order to discuss the
change in Im�r� we define

�Im�rs/p� = 100
Im��rs/p

�0�−�2��p� − Im�rs/p�
Im�rs/p�

. �33�

In Fig. 9 we show a plot of this quantity for s- and
p-polarized modes using again the parameters 
=5 nm and
a=200 nm. We show here only the results for �a�4, i.e., in
that region where the mean reflection coefficient is domi-

nated by Ms/p,1. For s-polarized modes one can see that
Im�rs� is increased up to 60% for values of �	 ,�� coinciding
with the dispersion relation of surface phonons. The under-
lying mechanism is the same as for the propagating modes
depicted in Fig. 8 but with the difference that �i is greater
than k0.

On the other hand, for p-polarized modes Im�rp� is de-
creased by about 20% for values of �	 ,�� coinciding with
the dispersion relation of the surface phonons. Around �a
�1 one also finds a large increase of about 15% for frequen-
cies slightly below and above the surface phonon frequency.
This can be easily understood by looking at Fig. 10 showing
a plot of Im�rp� and Im��rp

�0�−�2��� for �a=1 and for frequen-
cies near the surface phonon frequency. As can be observed,
the dispersion relation is broadened due to roughness in-
duced scattering of the surface phonons into other surface
phonon states. For a slightly rougher surface with 

=10 nm the broadening becomes a splitting of the surface
polariton dispersion,32,38 which can be easily understood
from the fact that the rough surface acts as a thin layer as
discussed above. It follows, that the quantity �Im�rs/p� has
negative values for frequencies around the surface phonon
frequency and positive values slightly below and above that
surface phonon frequency as can be seen in Fig. 9. We re-
mark that for 
=10 nm the direct perturbation theory, while
qualitatively correct, starts to give quantitatively wrong re-
sults for frequencies near the surface resonance frequency.39

C. Spectrum of the LDOS

From the above discussion it is clear that the roughness
correction of the LDOS defined as

�DE = 100
�DE�0�−�2�

�P − DE�0�

DE�0� �34�

will have positive and negative contributions for different
frequencies and distances. To make this point clear, we show
some plots of �DE and DE= �DE�0�−�2�

�P for frequencies rang-
ing from 1013 to 2.5�1014 s−1.

In Fig. 11 we plotted DE and �DE for propagating and
evanescent modes and for propagating modes only for a dis-
tance of z=5 �m. It is seen that DE is dominated by the

0 1 2 3 4
(κ - k0) a

1.75

1.775

1.8
ω

/1
014

s-1

0

20

40

60

(a)

0 1 2 3 4
(κ - k0) a

1.75

1.775

1.8

ω
/1

014
s-1

-20

-10

0

+10

(b)

FIG. 9. �Color online� Plot of Im�rs/p� as defined in Eq. �33� for
�a� s- and �b� p-polarized modes using 
=5 nm and a=200 nm.
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propagating modes and shows a small dip in the reststrahlen
band of SiC, where the contribution of the evanescent modes
is already relatively large. The surface roughness correction
is in this case extremely small and originates in equal parts
from the correction to the evanescent and propagating
modes.

For very small distances the LDOS is solely dominated by
the evanescent contribution so that in this case the spectrum
is quite different from that of the propagating part.21,24 In
Fig. 12 we show a plot of DE for z=500 nm, i.e., in the
evanescent regime, leaving the other parameters unchanged.
As can be seen, the spectrum of DE has a resonance due to
surface phonons. The curve of �DE shows a negative devia-
tion of about 12% at the surface phonon resonance and a
positive deviation of about 6% slightly below and above that
resonance as can be seen in the inset. This behavior is due to
the scattering of surface phonons discussed in the previous
section resulting in a broadened surface phonon dispersion.

D. Distance dependence of the LDOS

Let us now focus on the distance dependence of the
LDOS. For rough surfaces it can be expected that the rough-

ness correction of the LDOS �DE defined in Eq. �34� con-
verges for small distances, i.e., for z�a, to the PA result. On
the other hand, for large distances, i.e., for z�a, this correc-
tion should be inversely proportional to the correlation
length and can be described quantitatively utilizing the LDA
of the proper self-energy in Eqs. �22� and �23�. In Fig. 13 we
show a plot of �DE for SiC at the frequency 	=1014 s−1

using the roughness parameters 
=5 nm and a=100, 200,
and 500 nm. It can be seen that the LDOS converges to the
two limits for small and large distances giving a surface
roughness correction on the order of some percent only for
distances smaller than 100 nm. The arrow indicates that the
surface roughness correction decreases when increasing the
correlation length a.

In Fig. 14 we show a similar plot when choosing the
surface phonon frequency 	=	s=1.787�1014 s−1 and plot-
ting the modulus of �DE. As before, it can be observed that
�DE converges to the PA and the LDA for z�a or z�a,
respectively. Apart from that for distances z�a the surface
roughness correction to the LDOS DE becomes negative, a
feature not seen for 	=1014 s−1. This behavior can be un-
derstood from the above given discussion: the dispersion re-
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lation of the surface phonons is broadened due to roughness
induced scattering yielding a negative �Im�rp� for frequen-
cies around the surface phonon frequency and for wave vec-
tors around a−1 because in that region the roughness induced
scattering of surface phonons is strong. Since for a given
distance z the main contributions to DE stem from wave vec-
tors ��z−1, this roughness induced broadening becomes im-
portant for distances z�a giving a smaller LDOS than for a
flat surface so that �DE is negative. As can be seen in Fig. 14
the correction varies from about +10% to about −50% in the
distance regime z�100 nm for a=100 nm.

Now, as can, for example, be seen for �Im�rp� in Fig. 9�b�
and for the spectrum of �DE in Fig. 12 for frequencies
slightly below or above the surface resonance the LDOS in-
creases due to the roughness induced scattering of surface
phonons. Hence, relatively large positive surface roughness
correction can be expected for such frequencies. To illustrate
this statement we also plot �DE for 	=1.8�1014 s−1 in Fig.
15.

It is apparent from the above given examples that the
distance dependence of the surface roughness correction to
the LDOS is not only sensitive to the surface roughness pa-
rameters themselves but also to the chosen frequency. Addi-
tionally, the surface roughness correction �DE is in general
nonmonotonous and especially large for frequencies around
the surface phonon resonance.

VII. SUMMARY

In this work, we studied the near-field radiative heat trans-
fer between a nanoparticle and a rough surface utilizing di-
rect perturbation theory up to the lowest nonvanishing order
in the surface profile. Employing the material properties of
SiC we have shown that the distance dependence of the
roughness correction to the heat flux is nonmonotonous and
can be qualitatively understood from the roughness correc-
tion to the LDOS.

We have derived an approximation in the small distance
regime, i.e., for distances d much smaller than the correlation
length a and have shown that it exactly coincides with the
results of the proximity approximation. Hence, the roughness
correction is well described by the PA for d�a. Therefrom,

one can conclude that the PA might also be helpful in other
geometries as used in recent experimental setups5–8 to esti-
mate the impact of surface roughness to the near-field radia-
tive heat transfer at small distances. Since, the numerical
results give larger values for the heat transfer than predicted
by the PA for most distances d, one can expect to get an
estimate of the lower limit of the surface roughness correc-
tion when using the PA.

In the large distance limit d�a we have derived a simple
approximation for the corresponding expressions of the
LDOS and the heat flux, which simplifies the numerical cal-
culations in this limit tremendously. We have shown that in
this regime the rough surface can be replaced by an equiva-
lent surface layer of thickness 
2 /a for correlation lengths a
smaller than the skin depth making contact with the results
of Ref. 31. The corrections to the heat transfer are therefore
relatively small in that regime when considering roughness
with a�
.

In the intermediate regime we could show that the LDOS
and heat flux for a rough material can be smaller than that of
a material with a flat surface due to the roughness induced
scattering of surface phonon polaritons. Furthermore, we
have shown that due to surface roughness the LDOS and
therefore the heat flux has an s-polarized surface polariton
contribution. The mechanisms behind these two unexpected
results have been discussed. Finally, we want to emphasize
that the results for the LDOS presented in this work have a
much larger range of applicability since the LDOS, for in-
stance, also determines the lifetime of atoms and molecules
near a surface.
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APPENDIX A: PERTURBATION RESULT
FOR GREEN’S FUNCTION

With the procedure in Ref. 23 and the perturbation theory
in Ref. 22 it is possible to determine the Green’s dyadic for
each order with respect to the surface profile. The zeroth-
and first-order expressions can be found in Ref. 23. For the
second-order Green’s dyadic we find for z�z�,

GE�2�
�r,r�� =

1

2
� d2�

�2��2ei��·x+�rz�GE�2�
��� �A1�

with

GE�2�
��� = k0

21 − �

2�r
�� d2��

�2��2 S̃�2���� − ��

� T�kr
+,kr

+�N�kr
+,kt

−��T�kt
−�,kr

−��f���,z��

+� d2��

�2��2� d2��

�2��2 S̃�1���� − ��S̃�1���� − ���
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FIG. 15. �Color online� As Fig. 13 but with
	=1.8�1014 s−1.
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� T�kt
−�,kr

−��f���,z��� , �A2�

where

f��,z�� =
i

2�r
e−i�·x�+i�rz�, �A3�

S̃�n��� − ��� =� d2xeix·��−����S�x��n �A4�

for n=1,2. Here all matrices A are defined by

Ai,j�kr
�,kt

��� = Aijâi�kr
�� � â j�kt

��� , �A5�

where i , j= �s , p� and

âs�k�� = ẑ � �̂ and âp�k�� = âs �
k�

�k��
�A6�

are the normalized and orthogonal polarization vectors; ẑ is
the unit vector in z direction, �̂=� /� and k�= �� , ���t.

The matrix T is given by the diagonal matrix

T =�
2�r

�r + �t
0

0
2
��r

��r + �t

� = �ts 0

0 tp
� , �A7�

defining the amplitude transmission coefficients ts and tp.
The components of the matrices N�kr

+ ,kt
−�� and L�kr

+ ,kt
−� ,kt

−��
are given by

Nss = − �̂ · �̂���t + �t�� , �A8�

Nsp = −
�t�


�k0

��̂ � �̂��z��t + �t�� , �A9�

Nps = −
��̂ � �̂��z


�k0

��r
2� + �t�t�� , �A10�

Npp =
1

�k0
2 �− �����t + �t��� + �̂ · �̂��t���r

2� + �t�t���

�A11�

and

Lss = ��̂ · �̂����̂� · �̂�� −
�r��t�

��2 + �r��t�
��̂ � �̂��z��̂� � �̂��z,

�A12�

Lsp = −
�t�


�k0

��̂� � �̂��z��̂ · �̂��

−
�t�


�k0

��̂ � �̂��z

���� + �r��t��̂� · �̂�

��2 + �r��t�
, �A13�

Lps = −
�t


�k0

��̂ � �̂��z��̂� · �̂��

+
�t�


�k0

��̂� � �̂��z

���� − �t�t��̂ · �̂�

��2 + �r��t�
, �A14�

Lpp =
�t��t�

�k0
2 ��̂ � �̂��z��̂� � �̂��z

+
1


�k0
2

���� + �̂� · �̂��r��t�

��2 + �r��t�
����
� − �t�t��̂ · �̂�� .

�A15�

APPENDIX B: DEFINITION OF THE
PROPER SELF-ENERGY

Inserting the second-order Green’s function in Eq. �A1�
into Eq. �3� and averaging allows for finding the second-
order surface roughness correction to the LDOS in Eqs.
�10�–�12� when defining the proper self-energy Ms/p as

Ms/p =
�k0
�2�− i��� − 1�

8�r
2�Ds/p

0 �2 �Ns/p
a ��,�� + 2� d2��

�2��2

�g��� − ����Ns/p
b ��,��,����t� − �r��� �B1�

with Ns/p
a/b given by

Ns
a��,�� = �ts�2Nss�kr

+,kt
−� , �B2�

Np
a��,�� = �tp�2Npp�kr

+,kt
−�hp, �B3�

Ns
b��,��,�� = �ts�2Lss�kr

+,kt
−�,kt

−� , �B4�

Np
b��,��,�� = �tp�2Lpp�kr

+,kt
−�,kt

−�hp. �B5�

Now, inserting the above defined components of the matrices
N and L yields

Ms = − i�k0
�2�� − 1��t + �k0
�2�� − 1�2k0
2� d2��

�2��2g��� − ����

��Ds
0������̂ · �̂��2 +

Dp
0����
k0

2�
�r��t���̂ � �̂��2� , �B6�

Mp = i�k0
�2 �� − 1�
�

�t�1 −
�2

k0
2

� + 1

�
�

+ �k0
�2 �� − 1�2

�2 � d2��

�2��2g��� − ����

��− �t
2Ds

0������̂ � �̂��2 +
Dp

0����
k0

2�
���� + �̂ · �̂��r��t�

� ����� − �̂ · �̂��t��t�� . �B7�

Finally, these expressions can be further simplified by utiliz-
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ing cylindrical coordinates and introducing the modified
Bessel functions

In�x� =
1

2�
�

0

2�

d� cos�n��e−x cos���, �B8�

we get for s- and p-polarized modes the relation

Ms/p = Ms/p,0 + Ms/p,1 �B9�

with

Ms,0 = − i�k0
�2�t�� − 1� , �B10�

Ms,1 = �V�
0

�

dx xe−x2
	k0

2�Ds
0�2xa−1��I0��ax� + I2��ax��

+ Dp
0�2xa−1��r�2xa−1��t�2xa−1�

� �I0��ax� − I2��ax��
 , �B11�

and

Mp,0 = i�k0
�2�t
�� − 1�

�
�1 −

�2

k0
2

� + 1

�
� , �B12�

Mp,1 = V�
0

�

dx xe−x2� 2

�k0
2Dp

0�2xa−1����2x�

a
�2

I0��ax�

+ �t�����r�2xa−1�� − �t�2xa−1���2xa−1��I1��ax�

−
1

2
�I0��ax� + I2��ax���r�2xa−1��t�2xa−1��t

2����
− Ds

0�2xa−1��t
2����I0��ax� − I2��ax��� . �B13�

APPENDIX C: APPROXIMATION OF THE PROPER
SELF-ENERGY FOR �k0


�a Õ2�™1

Employing �k0

�a /2��1 for �r ,�t, and Ds,p

0 we find for
Ms,1 given in Eq. �B11�

Ms,1

V
� ��2k0

2a

4
�I0

0��a� + I2
0��a�� −

�2

� + 1

2

a
�I0

2��a� − I2
2��a��� ,

�C1�

where

V = �k0
�2 �� − 1�2

�2 e−�2a2/4 �C2�

and

In
m��� = �

0

�

dx xme−x2
In��x� . �C3�

For the p-polarized modes we get

Mp,1

V
� � 2

�k0
2

�

� + 1

a

2��� − 1��t���
4

a2�I1
2��a�

+ ��2�

a
�2

I0
2��a� +

2

a
�t

2����I0
2��a� + I2

2��a���
−

a

2
�t

2����I0
0��a� − I2

0��a��� . �C4�

The integrals of modified Bessel functions can be integrated
analytically yielding40

In
0��� =


�

2
e�2/8In/2� �2

8
� , �C5�

In
2��� =


�

2
e�2/8��1

2
+

�2

8
�In/2� �2

8
�� , �C6�

�+
�2

16
�I�n−2�/2� �2

8
� + I�n+2�/2� �2

8
��� �C7�

By means of these relations one can implement both limits
�a�1 and �a�1 by approximating the modified Bessel
function.

APPENDIX D: LARGE DISTANCE LIMIT
(zša AND ašds)

With a similar procedure as above but in the opposite
limit �k0


�a /2��1 we find for z�a the lowest-order terms
of the self-energy

Ms,1 � �k0
�2 �� − 1�2

�2

2

�k0
2 �− i�t

2k0

�� , �D1�

Mp,1 � �k0
�2 �� − 1�2


�
ik0. �D2�

As is apparent, in that limit the self-energy is independent
from the correlation length a.
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