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We have numerically implemented a perturbation series for the scattered electromagnetic fields above rough
surfaces, due to Greffet, allowing us to evaluate the local density of states to second order in the surface profile
function. We present typical results for thermal near fields of surfaces with regular nanostructures, investigating
the relative magnitude of the contributions appearing in successive orders. The method is then employed for
estimating the resolution limit of an idealized near-field scanning thermal microscope.
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I. INTRODUCTION

Quite recently there has been a notable increase in experi-
mental activities aiming at the exploration of properties of
thermally generated fluctuating electromagnetic fields close
to the surface of some material, and at detecting the near-
field mediated heat transfer.1–3 Hu et al.4 have measured the
near-field thermal radiation between micron-spaced glass
plates, and have demonstrated that the resulting near-field
heat transfer exceeds the far-field limit set by Planck’s black-
body radiation law. Next, Narayanaswamy et al. and Shen et
al. have studied the heat transfer between microspheres and
flat substrates, with emphasis on the coupling of surface pho-
non polaritons across the gap between them, and have re-
ported heat-transfer coefficients three orders of magnitude
above the blackbody radiation limit.5,6 Then Rousseau et al.7

have carried out precise measurements of the radiative heat
transfer between sodalime glass spheres with diameters of 22
or 40 �m and borosilicate glass plates for distances ranging
from 30 nm to 2.5 �m, and have verified theoretical predic-
tions based on fluctuational electrodynamics1,8 with impres-
sive accuracy. On the other hand, significant progress has
been made at using near-field effects for imaging. Kittel et
al. are developing a device termed near-field scanning ther-
mal microscope �NSThM� �Refs. 9–11� which does not yet
seem capable of highly accurate quantitative measurements
of the near-field heat current between its sensor and the
sample, but which lends itself to nanoscale thermal imaging
of structured surfaces.12 Moreover, De Wilde et al. have re-
ported the successful operation of a thermal radiation scan-
ning tunneling microscope,13 providing images of thermally
excited surface plasmons, and giving clear evidence for spa-
tial coherence effects in near-field thermal emission.

These remarkable developments indicate that thermal
near-field physics, after having been under intense theoretical
investigation for some time already,1–3,8 is breaking through
to the forefront of experimental research right now. There are
several compelling reasons for this trend. Besides the pros-
pects of obtaining novel insight into fundamental physics in
dielectric matter, and of developing advanced diagnostic
tools for materials science, thermal near-field effects have
great potential for near-field thermophotovoltaic energy
conversion.14–18

On the theoretical side, one of the most important quan-
tities characterizing the fluctuating thermal near field close to

a dielectric surface is its local density of states �LDOS�.19 In
particular, the power P transferred between a dielectric
sample at temperature TS and a nanoparticle at temperature
TP, brought into the sample’s near field at a position a such
that the particle may effectively be treated within the dipole
approximation, and the heat transfer proceeds almost entirely
via evanescent modes, is given by �see, e.g., Refs. 20–25�

P = �
0

�

d�2�����,TP� − ���,TS��

���P����DE��,a� + �P����DH��,a�� , �1�

where DE�� ,a� is the electric and DH�� ,a� is the magnetic
part of the sample’s LDOS at the point a of effective inter-
action; �P���� and �P���� denote the imaginary part of the
particle’s electric and magnetic polarizability, respectively.
Finally,

���,T� =
	�

exp�	�/kBT� − 1
�2�

is the Bose-Einstein function; the sign in Eq. �1� is chosen
such that a net energy transfer from the particle to the
sample, occurring for TP
TS, gives a positive P. The use of
the dipole approximation underlying Eq. �1� requires that the
distance of the nanoparticle from the sample’s surface re-
mains large compared to its linear size. Those frequencies
which significantly contribute to the heat transfer are limited
by the higher temperature Tmax=max�TP ,TS�. Provided the
polarizabilities and the LDOS exhibit no resonances in the
accessible frequency regime, requiring in particular the ab-
sence of thermally excitable surface modes, the main contri-
bution to the integral �1� merely stems from frequencies in
the vicinity of the thermal frequency �th�2.82 kBT /	, so
that

P � �th��P���th�DE��th,a� + �P���th�DH��th,a�� . �3�

Under suitable conditions, already this simple approximation
can give surprisingly good results when trying to theoreti-
cally reconstruct surface images obtained with the NSThM.12

The possibility to experimentally assess the LDOS above
nanostructured surfaces demands refined techniques for its
calculation. Assuming local thermal equilibrium, and consid-
ering positions r so close to the sample’s surface that the
energy density is dominated by evanescent modes and the
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contribution of propagating modes can be neglected, the
electric and the magnetic LDOS are related to the imaginary
parts of the traces of the renormalized �or “reflected”� elec-
tric and magnetic Green’s dyadics Gr

E and Gr
H through the

relations19

DE��,r� =
�

�c2 Im Tr Gr
E�r,r� �4�

and

DH��,r� =
�

�c2 Im Tr Gr
H�r,r� . �5�

In the present paper we exploit this connection for comput-
ing the LDOS above a nanostructured surface to second or-
der in the surface profile, relying on an earlier formulation of
the perturbation series by Greffet.26 The method is techni-
cally involved, and soon hits practical computational limits
when proceeding to higher orders. Nonetheless, we show
that second-order calculations now are feasible routinely.
Our work thus extends a previous study,27 which has given
first-order results, and enables us to delineate under which
conditions low-order perturbation theory is sufficient. It also
complements a recent investigation by Biehs and Greffet28

who have considered rough surfaces described as stochastic
Gaussian processes. In contrast, we focus on surfaces with
deliberately induced, regular nanoprofiles. We proceed as
follows. In Sec. II we sketch the underlying perturbative
scheme,26 and outline a few details of its numerical imple-
mentation, deferring technicalities to the Appendix. We then
present results of our computations in Sec. III, first examin-
ing the relative magnitude of first- and second-order contri-
butions, and then outlining how to quantify the resolution
power of an idealized NSThM. Some conclusions are drawn
in the final Sec. IV.

II. COMPUTATION OF THE GREEN’S DYADICS

In this section we utilize an analytical perturbative ap-
proach, originally developed by Greffet for calculating the
scattered electromagnetic waves above a rough dielectric
surface,26 in order to obtain the required Green’s dyadics Gr

E

and Gr
H. Greffet’s approach results in a series of recursively

determined contributions in ascending orders of the surface
profile, and thus enables one to systematically assess the
higher-order terms.

A. Calculational scheme

We assume that the surface is described by an expression
z=hf�x ,y�, where f�x ,y� is a normalized function varying
between +1 and −1; the scaling parameter h carries the di-
mension of a length. The nonmagnetic dielectric medium,
equipped with permittivity ���, fills the entire half space
z�hf�x ,y�. For z
hf�x ,y�, outside the dielectric, the total
electric field consists of a prescribed incident component
Ei�r�, and of the so far unknown reflected component Er�r�,
while the transmitted field inside the dielectric is denoted as
Et�r�. Greffet has given a recursive series solution for the
transmitted and the reflected field,26 invoking the extinction

theorem and the Rayleigh hypothesis.29 The extinction theo-
rem amounts to an exact integral formulation of the bound-
ary condition, whereas the use of the Rayleigh hypothesis
means expanding the transmitted, incident, and reflected
fields in plane waves traveling in z direction,

Et�r� =� d2�et���ei��·�−kzz�, �6�

Ei�r� =� d2�ei���ei��·�−kz0z�, �7�

and

Er�r� =� d2�er���ei��·�+kz0z�. �8�

Here we write r= �x ,y ,z�t for the position vector,
�= �x ,y ,0�t for its lateral part, and �= �kx ,ky ,0�t for the lat-
eral component of the wave vector; moreover,

kz = �k0 − � �9�

and

kz0 = �k0 − � �10�

are the z components of the wave vector inside and outside
the medium. We also use the notation k0=� /c and �= ���.
These expansions �6�–�8� assume translational symmetry in
the x-y plane and hence are strictly justified outside the struc-
tured region, that is, for z
h and z�−h. However, the ex-
tinction theorem requires to evaluate the fields on the very
surface of the dielectric, where the validity of the above ex-
pressions cannot be taken for granted. Ignoring this compli-
cation and using the expansions �6�–�8� nonetheless is a
common procedure30,31 which has been looked into by sev-
eral authors from the mathematical point of view;32–35 it ap-
pears to work reliably at least for sufficiently small values of
h. For example, in the case of a sinusoidal grating described
by z= �h /2�cos�2�x /D� this Rayleigh hypothesis holds
rigorously32–34 up to hmax /D=0.142521, and may therefore
be employed for both the propagating and the evanescent
parts of the field as long as the ratio h /D stays below this
boundary.

The field’s Fourier components then are expanded in the
forms

et��� = 	
m=0

�
et

�m����
m!

, �11�

er��� = 	
m=0

�
er

�m����
m!

, �12�

and

ei��� = 	
m=0

�
ei

�m����
m!

= ei
�0���� . �13�

It is useful to split the fields into their s and p components
according to
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et��� = et,s���as��� + et,p���ap,t
− ��� , �14�

ei��� = ei,s���as��� + ei,p���ap,0
− ��� , �15�

and

er��� = er,s���as��� + er,p���ap,0
+ ��� , �16�

where

as��� =
1

�
− ky

kx

0
� , �17�

ap,t
− ��� = −

1

nk0�
kxkz

kykz

�2 � , �18�

ap,0
− ��� = −

1

k0�
kxkz0

kykz0

�2 � , �19�

and

ap,0
+ ��� =

1

k0�
kxkz0

kykz0

− �2 � , �20�

here n=� is the index of refraction.
Following Greffet,26 one then obtains the transmitted field

in the recursive form

�et,s
�m����

et,p
�m����

 =
kz − kz0

4�2 R−1��,��� d2���R��,���

� 	
q=1

m �m

q
� �ih�qF̂�q���� − ��

�kz0 − kz��
1−q �et,s

�m−q�����
et,p

�m−q�����
�

�21�

so that et
�m���� is proportional to hm; the according expression

for the reflected field reads

�er,s
�m����

er,p
�m����

 =
 − 1

8�2kz0
�� d2���P��,���

� 	
q=0

m−1 �m

q
� �− ih�m−qF̂�m−q���� − ��

�kz0 + kz��
1+q−m

� �et,s
�q�����

et,p
�q�����

� + P��,��
4�2

kz + kz0
�et,s

�m����
et,p

�m����
� .

�22�

In these equations the quantities F̂�n���� denote the Fourier
transforms of powers of the surface function,

F̂�n���� =� d2�ei�·�fn��� . �23�

The linear operators R�� ,��� and P�� ,��� effectuate
the double vectorial product with kr

−= �kx ,ky ,−kz0�t and
kr

+= �kx ,ky ,kz0�t, respectively; these double products �namely,
kr

−�kr
−� and kr

+�kr
+�� typically appear when using the ex-

tinction theorem. In the basis chosen, the matrix forms of
these operators are

R��,��� = −
k0

2

���
 � · �� −
kz��� � ���z

nk0

kz0�� � ���z

k0

�2��2 + � · ��kz0kz�

nk0
2

�
�24�

and

P��,��� = −
k0

2

���
 � · �� −
kz��� � ���z

nk0

− kz0�� � ���z

k0

�2��2 − � · ��kz0kz�

nk0
2

� ,

�25�

writing ������z for the z component of the vectorial prod-
uct of � and ��.

The above recursions start from the well-known half-
space results obtained for a perfectly flat surface, which can
be cast into the forms

�et,s
�0����

et,p
�0����

 = �ts��� 0

0 tp��� �ei,s���
ei,p���  �26�

and

�er,s
�0����

er,p
�0����

 = �rs��� 0

0 rp��� �ei,s���
ei,p���  �27�

with the Fresnel coefficients

ts��� =
2kz0

kz0 + kz
; tp��� =

2nkz0

n2kz0 + kz
,

rs��� =
kz0 − kz

kz0 + kz
; rp��� =

n2kz0 − kz

n2kz0 + kz
.

From these fields �21� and �22� we now proceed to the cal-
culation of the Green’s dyadics. More precisely, in order to
compute the local density of states we need to determine the
reflected part of the Green’s dyadics for coinciding source
and observation points. To this end, we take the field of a
deltalike source current located at �+zez and pointing into
the direction of the unit vector j as incident field, giving

�ei,s���
ei,p���  = −

��0

2kz0
e−i��·�−kz0z�� as��� · j

ap,0
− ��� · j

 . �28�

To zeroth order in h, the reflected field then is
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�er,s
�0����

er,p
�0����

 = −
��0

2kz0
e−i��·�−kz0z��rs��� 0

0 rp��� � as��� · j

ap,0
+ ��� · j

 .

�29�

The directions of the s and p components of the incident field
are given by as��� and ap,0

− ���, while the components of the
reflected field are given by as��� and ap,0

+ ���. Therefore it is
convenient to split the Fourier coefficients of the Green’s
dyadics into the four parts that result from taking the dyadic
products of these unit vectors, leading to

gr
E,�0���� = gr,ss

E,�0����as��� � as��� + gr,sp
E,�0����as��� � ap,0

− ���

+ gr,ps
E,�0����ap,0

+ ��� � as���

+ gr,pp
E,�0����ap,0

+ ��� � ap,0
− ��� . �30�

Having employed a deltalike source current the relation be-
tween the field and the electric Green’s dyadic simply reads
GE · j=E / �i��0�, so that the coefficients of this dyadic can
easily be read off from Eq. �29�. By means of an inverse
Fourier transform, equating source and observation point,
one then arrives at the familiar result for the reflected
Green’s dyadic pertaining to a flat surface,

Gr
E,�0� =

i

4�2� d2�
e2ikz0z

2kz0
�rs���as��� � as���

+ rp���ap,0
+ ��� � ap,0

− ���� . �31�

With the help of Eq. �22� one obtains similar expressions to
all orders in the profile height h. An advantage of this ap-
proach lies in the fact that it is then quite easy to also deter-
mine the magnetic Green’s dyadic, which is related to the
electric one through36

Gr
H�r,r� = −

1

k0
2 � � Gr

E�r,r�� � ���r�=r. �32�

In Fourier space the operator � is replaced either by
i��+kz0ez� or by −i��−kz0ez�, depending on whether the
curl acts on a unit vector belonging to the incident or to the
reflected field. Therefore, the magnetic Green’s dyadic is
derived from its electric counterpart by simply replacing
a��� � a���� by the expression − 1

k0
2 ��+kz0ez��a��� � a����

� ���−kz0� ez�. Here we introduce �� and kz0� because it is
only to zeroth order that the reflected and the incident field
are characterized by the same wave vector.

Finally, for calculating the trace of the Green’s dyadics
one just has to replace the dyadic products by their traces.
Hence, the method sketched here yields a transparent strat-
egy for obtaining the electric and the magnetic LDOS above
a structured surface. In practice, a restriction on the maxi-
mum order achievable is imposed by the available computa-
tional resources. To zeroth order only two-dimensional inte-
grals have to be evaluated, to first-order four-dimensional
integrals appear; to second order one already has to deal with
six-dimensional integrals, and so on. Clearly, a good choice
of the numerical tools is decisive here; we therefore present
some details of our implementation.

B. Numerical implementation

We exemplarily discuss the calculation of the electric lo-
cal density of states to first and second orders; its magnetic
counterpart, and the higher-order terms, are determined in a
similar way. With the help of Eq. �22� the trace of the first-
order contribution to the electric reflected Green’s dyadic is
computed as

Tr�Gr
E,�1�� = −� d2q

4�2eiq·�F̂�1��− q�a1�q� , �33�

where a1�q� is given by the integral

a1�q� =� d2��S�1��q + ��,��� · Atr
�E��q + ��,��� �34�

with the four-dimensional vectors S�1� and Atr
�E� specified in

the Appendix. We either employ an experimentally deter-
mined surface profile,12 or some suitably selected model
function f���; sample it, and perform a discrete FFT in order

to determine F̂�1�. Then we compute a�q� for each required
q by numerical integration, and finally take an inverse FFT

of F̂�1��−q�a�q� to get the trace �33� of the first-order Green’s
dyadic.

To second order one has to deal with two contributions,

one containing F̂�2�, the other feeding from two factors F̂�1�.
The former contribution has the same structure as the first-
order term,

Tr�Gr,1
E,�2�� =� d2q

4�2eiq·�F̂�2��− q�a2�q� �35�

with

a2�q� =� d2��S1
�2��q + ��,��� · Atr

�E��q + ��,��� �36�

and is evaluated in the same manner. The other contribution
contains a further integral,

Tr�Gr,2
E,�2�� =� d2q

4�2eiq·�F̂�1��− q�� d2q�

4�2 eiq�·�

�F̂�1��− q��a3�q,q�� �37�

with integration variables q=�−�� and q�=��−��, and with
the expression

a3�q,q�� =� d2��ei�kz0+kz0� �zS2
�2���,��,��� · Atr

�E���,��� ,

�38�

again, S1
�2� and S2

�2� are stated explicitly in the Appendix.
After computing a3�q ,q�� on a discrete mesh of q and q�, a
four-dimensional inverse FFT is performed for determining
the resulting contribution to the trace of the Green’s dyadic.

The integrals are numerically evaluated using Cuba
routines;37 the Fourier transforms are executed by means of
the FFTW library.38
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III. RESULTS

In this section we discuss some numerical results for the
local density of states above example topographies, calcu-
lated to second order in the profile height. We first consider
the relative magnitude of the individual contributions, in or-
der to estimate under which conditions the termination of the
perturbation series can be justified. We then use the second-
order data to discuss the resolution power of an idealized
NSThM in a mode of operation in which the total heat trans-
fer is kept constant while scanning a sample’s surface.

A. Magnitude of second-order contributions

Our basic model structure is a bar with height h and
smoothed edges placed on an otherwise perfectly planar sur-
face, infinitely extended in y direction and possessing the
width w in x direction, as described by the function

hf1�x� = h
1

exp����x� − 0.5w�� + 1
. �39�

Our calculations are done for h=5 nm, w=30 nm, and in-
verse smoothing length �=109 m−1. For comparison, we also
consider the somewhat rounder profile

hf1�x� = h exp�−
1

1 − �x/v�2 + 1� �40�

with v adjusted such that the respective areas under the two
functions �39� and �40� coincide. The resulting profile shapes
are drawn in Fig. 1.

Because these profiles depend on only one variable, the

Fourier transforms F̂�n� contain delta functions, so that the
integrals over q and q� in Eqs. �33�, �35�, and �37� become
effectively one-dimensional, drastically reducing the numeri-
cal effort. The profiles are discretized with a stepsize of
1 nm, covering a total range of 500 nm; we have checked
that the numerical results thus obtained are stable against
further reduction of the grid size to 0.5nm. We assume that
the dielectric function ��� of the samples is given by the
Drude model39

���� = 1 −
�p

2

�2 + i��
�41�

with plasma frequency �p=1.4�1016 s−1 and inverse relax-
ation time �=3.3�1013 s−1, describing gold at the tempera-
ture T=300 K.

In Fig. 2 we depict the zeroth-, first-, and second-order
contributions to the electric and to the magnetic part of the
LDOS for the structure �39�, evaluated at a constant height of
10 nm above the base plane for �=1014 s−1, roughly equal
to the dominant thermal frequency at 300 K. The second-
order terms qualitatively show the same behavior as the first-
order ones,27 but there is a notable difference between the
electric and the magnetic part. The second-order contribution
to the magnetic LDOS at least is smaller than its first-order
precessor, although only by a factor which is not small com-
pared to unity, whereas the magnitude of the second-order
electric contribution remains comparable to that of the first-
order one, and even slightly exceeds it. At the bar’s center,
the first- and the second-order electric contributions amount
to roughly 1.5 times the zero-order term. This behavior is not
accidental; it can be quantitatively understood with the help
of an elementary consideration. At sufficiently short dis-
tances, that is, for z−h not too large compared to the profile
width w, the local geometry equals that of a flat surface,
shifted by h against the base plane. Therefore, the electric
LDOS DE at such a point r= �0,0 ,z�t is approximately given
by the LDOS Dfs

E pertaining to a perfectly flat surface19

through the relation

0

2.5

5

-25 0 25

he
ig

ht
(n

m
)

lateral position (nm)

FIG. 1. �Color online� Profile function �39� with parameters
as employed in our model calculations, height h=5 nm, width
w=30 nm, and inverse smoothing length �=109 m−1 �full line�,
together with the reference profile �40� �dashed�. In either case, the
dielectric properties of the sample are given by the Drude model
with parameters for gold at 300 K.
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FIG. 2. �Color online� Zeroth-, first-, and second-order contri-
butions to the �a� electric and to the �b� magnetic parts of the LDOS
above a gold surface structured with the nanobar �39� as sketched in
Fig. 1, for �=1014 s−1 at an observation height of 10 nm above the
base substrate plane. Note the different scales.
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DE�r� � Dfs
E��0,0,z − h�t� . �42�

Now the distance dependence of Dfs
E in the near field is given

by

Dfs
E��0,0,z�t� �

1

z3 , �43�

the strong decay of this electric LDOS with the third power
of the distance clearly aids the local approximation Eq. �42�.
Thus, one has

DE��0,0,z�t� �
1

�z − h�3 . �44�

Expanding in powers of h, this yields

DE��0,0,z�t� �
1

z3 +
3h

z4 +
6h2

z5 + O�h3� , �45�

allowing one to estimate the ratios of the contributions ap-
pearing in different orders:

DE,�1�

DE,�0� � 3
h

z
;

DE,�2�

DE,�0� � 6
h2

z2 . �46�

With h /z=0.5, which is the value considered in Fig. 2, one
obtains DE,�1� /DE,�0�=DE,�2� /DE,�0�=1.5, in quite good agree-
ment with the exact numerical result. Generalizing this argu-
ment to any order n, one observes

DE,�n+1�

DE,�n� �
n + 3

n + 1

h

z
. �47�

Thus, while the series may still converge for any z
h, con-
vergence at short distances would be rather slow; for h /z
=0.5 the magnitude of the leading successive contributions,
normalized to the zeroth-order one, is 1:3/2:3/2:5/4:15/16
:21/32:…. In this example, terminating the perturbation se-
ries at the second order means that one collects only about
half of the exact value.

In the case of the magnetic LDOS, one has

Dfs
H��0,0,z�t� �

1

z
�48�

so that here a larger area of the sample’s surface contributes
to the LDOS than in the electric case �43�, implying that a
local approximation analogous to Eq. �42� cannot be ex-
pected to work as well as before. Ignoring this restriction and
performing the analysis nonetheless, one ends up with

DH,�n+1�

DH,�n� �
h

z
, �49�

which, in view of the shaky foundation of the reasoning, still
works satisfactorily, capturing both the correct trends and the
orders of magnitude read off from Fig. 2.

It is evident that these general findings do not depend on
the specific dielectric properties of the material. Indeed,
when considering a polar sample with a permittivity de-
scribed by the Reststrahlen formula40

��� = ��1 +
�L

2 − �T
2

�T
2 − �2 − i��

� �50�

and inserting parameters appropriate for gallium nitride,41

namely, �=5.35 for the high-frequency permittivity,
�L=1.41�1014 s−1 and �T=1.06�1014 s−1 for the fre-
quencies of the longitudinal and transversal phonons, and
�=1.51�1012 s−1 for the relaxation rate, and again taking
the profile Eq. �39�, we obtain Fig. 3, which shows the same
qualitative features as the previous Fig. 2 for the gold
sample, although, of course, the scales are quite different;
now the electric contribution dominates. Likewise, the re-
sults do not seem to depend sensitively on the precise form
of the structure. The corresponding data obtained for the ref-
erence profile �40� are remarkably similar to the previous
ones, as shown in Fig. 4, and again confirm the simple esti-
mates �47� and �49�. For this reason, we only consider the
gold nanobar �39� in the following.

To conclude the above discussion, in the cases studied so
far the restriction to second-order perturbation theory already
seems questionable, although the strong dominance of the
magnetic LDOS for metallic samples might still mask the
problem with the electric one. This is potentially important
for NSThM-applications, where typical probe-sample dis-
tances range down to a few nanometers. On the other hand,
low-order perturbation theory may be expected to work reli-
ably when the profile height h clearly is the smallest length
scale of the problem; according to the above reasoning, it
should become better when increasing the observation dis-
tance z. In order to estimate the smallest z at which second-
order perturbation theory might still give quantitatively good
results for our model profile �39�, we plot in Fig. 5 the ratios
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FIG. 3. �Color online� As Fig. 2, but for a sample consisting of
gallium nitride �GaN�.
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of the various contributions, evaluated above the bar’s center
at varying distance; here we also consider the regime z−h
�w where the short-distance estimates �47� and �49� may
no longer be taken for granted. As a rough guideline, one

may accept the truncation of the perturbation series at
the second order if the ratio of the second-order contribution
to the zeroth-order one drops below 10%, say. For the
dominant magnetic part this criterion is satisfied for
z
20 nm, while the electric part then requires z
41 nm.
�When reducing the acceptance limit to 5%, one gets
z
26 nm and z
56 nm, respectively.� The potential prob-
lem of slow convergence here is expressed by the fact that
the ratio of second- to first-order contribution decreases only
rather slowly with increasing z. Still, in view of the relative
smallness of the electric LDOS above metallic samples this
does not seem to be essential.

B. Resolution of an NSThM

Scanning the LDOS at a constant height above the base
plane, as done numerically in Figs. 2–4, corresponds to the
constant height mode of operation of an NSThM. This is not
an advantageous mode, for two practical reasons. On the one
hand, it is hard to realize with sufficient accuracy, on the
other, it contains the risk of a probe-sample collision when
scanning a surface with an unknown topography, almost al-
ways resulting in irreparable damage to the delicate sensor.11

A much more favorable mode avoiding these complications
is the constant transfer mode, meaning that the sensor height
is continuously regulated such that the detected heat current
remains constant when moving the sensor over the surface;
the information about the sample’s near field then is embod-
ied in the recorded sensor height. Note that this latter mode
differs from the constant distance mode, which uses addi-
tional information on the local distance of the sensor from
the structured surface �obtained by electron tunneling spec-
troscopy� in order to keep that distance constant. That con-
stant distance mode was employed experimentally by Kittel
et al.;12 numerical first-order results pertaining to this mode
can be found in Ref. 27. In contrast, a major benefit of the
constant transfer mode lies in the fact that it exclusively re-
quires heat-transfer information, so that there is no need to
retain the sensor’s ordinary STM-capability. Moreover, it al-
lows one to assess the resolution limit of the NSThM in a
simple manner.

For modeling this constant transfer mode, we select some
appropriate fixed value of the LDOS, and then calculate that
observation distance a at which this LDOS-value is reached.
Only the sum of all contributions is of interest now. For
consistency, we also require that the second-order to zeroth-
order ratio remains less than 10% for the magnetic LDOS, as
the electric one does not contribute significantly here. Dis-
cussing the NSThM’s resolution power first requires the
specification of a norm structure containing the length scale s
to be resolved. Here we take two parallel gold bars of the
form �39�, as described by the profile

hf2�x� = h� 1

exp��1��x + 0.5s� − 0.5w1�� + 1

+
1

exp��2��x − 0.5s� − 0.5w2�� + 1
 , �51�
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FIG. 4. �Color online� As Fig. 2, for a gold sample with the
reference profile �40�.
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the length scale in question is their separation s. For our
matter-of-principle calculations we again choose h=5 nm,
together with w1=w2=30 nm and �1=�2=109 m−1.

In Fig. 6�a� we display second-order results for both the
one-bar geometry, and for the two-bar structure with bar
separation s=50 nm. Here the observation distance a is
computed such that the LDOS remains fixed at the value
attained for the distance aeff=20 nm above the base plane
at positions far away from the bars, always assuming
�=1014 s−1.

In order to discuss the resolution of an idealized NSThM,
we make two further assumptions. First, we propose that the
sensor is pointlike so that no effects due to the real sensor’s
extension are considered, implying that we aim at the sensor-
independent best possible resolution limit. In reality, the fi-
nite sensor size will lead to a lower resolution. Second, we
assume that the signal recorded by the device is proportional
to the LDOS at the dominant thermal frequency, which ac-
tually appears to be quite a good approximation for metallic
samples.12 We then take the ratio �d /d, where d is the maxi-
mum difference a−aeff encountered above each of the two
identical bars, and �d denotes the difference between that
maximum distance and the minimum distance adopted be-
tween the bars, as illustrated in Fig. 6�b�. We now stipulate
that the two bars can be resolved if �d /d�r; this number r
characterizes the sensitivity of the respective experimental
set-up.

In Fig. 7 we plot the ratio �d /d for effective distances
aeff=20 nm, 30 nm, and 40 nm, as functions of the bar sepa-
ration s. If we take r=0.2 for the sake of discussion, the
resolvable minimum distances are smin�50 nm for aeff
=20 nm, smin�65 nm for aeff=30 nm, and smin�80 nm

for aeff=40 nm. We emphasize that these figures serve to
illustrate the basic principle and should not be taken at face
value. The resolution achievable with an actual NSThM de-
vice will also depend on the type of surface structure under
investigation; a further limit will be imposed by the finite
sensor volume. The key message, however, stands out
clearly. When scanning an isothermal, nanostructured surface
with a near-field scanning thermal microscope, one is able to
resolve structures with linear extensions which may fall or-
ders of magnitude below the scale set by the dominant ther-
mal wave length.12

IV. CONCLUSIONS

We have demonstrated that a numerical evaluation of
Greffet’s perturbation series for the scattered electromagnetic
field at rough surfaces26 is routinely feasible up to second
order. This allows one to evaluate the local density of states
above surfaces with arbitrary profiles, thus lifting the restric-
tion to the limited class of profiles which can be dealt with
analytically.

The convergence properties of this series seem to warrant
further analysis. While one may reasonably guess that low-
order perturbation theory should be sufficient when the pro-
file height h is by far the smallest length scale of the prob-
lem, the slow decrease of the successive contributions to the
electric LDOS depicted in Fig. 5�a� for the smoothed, but
still quite steep metallic model structure sketched in Fig. 1,
together with the elementary estimates based on Eq. �42�,
are warning signs. While our results have been obtained for
specific model profiles, it would be quite helpful to have
mathematically rigorous and sharp upper bounds on the
higher-order contributions for any given surface structure.

We did not discuss possible effects due to the nonlocal
dielectric response of the sample, which might come into
play at distances of a few nanometers.42 The question
whether such effects would be detectable with a near-field
scanning thermal microscope �NSThM� deserves further in-
vestigations.

With respect to NSThM surface imaging, we have shown
how to estimate the best possible resolution limit, attained
for a pointlike sensor. Here we have introduced a mode of
operation characterized by constant heat transfer, giving ac-
cess to isolines of the LDOS. It is now a major task to extend
the preliminary studies reported in Ref. 12, considering sur-
faces with both regular and random nanostructures, and to
further explore the concept of near-field thermal imaging.

FIG. 6. �Color online� �a� Observation dis-
tance above the one-bar gold sample described
by Eq. �39� �1 bar�, and above the sample with
two parallel bars specified by Eq. �51� �2 bars�,
determined such that the second-order LDOS for
�=1014 s−1 constantly keeps that value which is
attained for the distance aeff=20 nm far away
from the bars. �b� Definition of the quantities d
and �d employed for discussing the resolution of
an ideal NSThM.

0

0.5

1

50 100 150

∆d
/d

separation distance s (nm)

aeff=20nm
aeff=30nm
aeff=40nm

FIG. 7. �Color online� Ratio �d /d for three different values of
aeff �20, 30, and 40 nm�, as functions of the bar separation s.
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APPENDIX: CALCULATIONAL DETAILS

In this appendix we state the precise forms of the expres-

sions which have been used in Sec. II B. The vector S�1�

introduced in Eq. �34�, required for computing the first-
order electric contribution �33�, contains the products of

the transmission coefficients ts���= �2kz0��kz0+kz�−1 and

tp���= �2�kz0��kz0+kz�−1, together with a convenient
prefactor:

S�1���,��� =
k0

2

���

 − 1

16�2

e−i�kz0+kz0� �z

kz0kz0� 

ts���ts����� · ��

− ts���tp����
kz�

nk0
�� � ���z

− tp���ts����
kz

nk0
�� � ���z

tp���tp����
n2k0

2 �n2�2��2 − kzkz��� · ����
� . �A1�

The other vector Atr
�E� appearing in Eq. �34� contains the traces of the dyadic products,

Atr
�E���,��� =

1

����
� · ��

−
kz0�

k0
�� � ���z

−
kz0

k0
�� � ���z

1

k0
2 ��2��2 − kz0kz0� �� · ����

� . �A2�

For computing the magnetic contribution, this vector has to be replaced by

Atr
�H���,��� =

1

����
1

k0
2 ��2��2 − kz0kz0� �� · ����

kz0

k0
�� � ���z

kz0�

k0
�� � ���z

� · ��

� . �A3�

The vector S1
�2��� ,��� determining the second-order term �35� is given by

S1
�2���,��� = i

k0
2� − 1�

16�2���

e−i�kz0+kz0� �z

kz0kz0� 

ts���ts�����kz + kz���� · ���

− ts���tp����
kz�

nk0
�kz + kz���� � ���z

− tp���ts����
1

nk0
�kzkz� + n2kz0

2 ��� � ���z

tp���tp����
1

n2k0
2 ��2��2�n2kz� + kz� − �� · ���kz��kzkz� + n2kz0

2 ��
� , �A4�

whereas the vector S2
�2��� ,�� ,��� entering into the expression �38�, and thus into the other second-order contribution �37�,

takes the form
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S2
�2���,��,��� = − i

k0
2� − 1�e−i�kz0+kz0� �z

8�2���2��

kz� − kz0�

kz0� kz0

�

ts���ts������� · ������ · ��� −

kz�kz0�

��2 + kz�kz0�
�� � ���z��� � ���z

− ts���tp����� kz�

nk0
�� · ������ � ���z +

kz�

nk0

���� + kz0� kz���� · ���
��2 + kz0� kz�

�� � ���z
− tp���ts����� kz

nk0
�� � ���z��� · ��� +

kz0��� � ���z

nk0

n2�2��2 − kzkz��� · ���
��2 + kz0� kz�


tp���tp����� kz�kz

n2k0
2 �� � ���z��� � ���z +

1

n2k0
2

��2��2 + kz0� kz���� · ���
��2 + kz0� kz�

�n2�2��2 − kzkz��� · ���� � . �A5�
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