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Abstract: By combining stochastic electrodynamics and the Maxwell-
Garnett description for effective media we study the raekaheat transfer
between two nanoporous materials. We show that the heatdlube sig-
nificantly enhanced by air inclusions, which we explain aythe presence
of additional surface waves that give rise to supplemertdhannels for heat
transfer throughout the gap, (b) an increase in the cotinibgiven by the
ordinary surface waves at resonance, (c) and the appeanéricestrated
modes over a broad spectral range. We generalize the knquwasston for
the nanoscale heat flux for anisotropic metamaterials.
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1. Introduction

Near field heat transfer [1, 2, 3, 4] between closely spacetiogic media has been inten-
sively studied since it has been predicted that the heat flunamoscale can exceed the far-
field limit of the Planck’s blackbody theory by orders of magde [5, 6]. When consid-
ering dielectrics, surface phonon polaritons provide #alaal enhancement as discussed in
Refs. [7, 8, 9]. Several experiments have recently confirthedheoretical predictions for sim-
ple systems [15, 16, 11, 13, 14].

With the modern techniques of nanofabrication it is now pamego explore a whole new
level of complexity in material science and to fabricatefiaral materials that can exhibit a
considerable diversity of optical properties [17, 18, 19, 21, 22]. In many situations, these
composite media possess privileged orientations so thatalectromagnetic response depends
on the direction of photons propagation. When the photonigeleagth in such a medium is
large compared to the size of its representative unit dedl Jatter behaves effectively like an
anisotropic material and therefore may be described by factefe permittivity tensor (and,
when necessary, an effective permeability as well). Thignadly points to the question of how
anisotropy influences the near-field heat transfer.

In this work, we address this question in the particular azsevo semi-infinite uniaxial
media characterized by optical axes orthogonally oriemtithl respect to the surface of inter-
action. The paper is organized as follows: In Sec. Il we @ettie expression for the heat flux
between two anisotropic media. After a brief descriptiortha relevant composite media to
our purposes in Sec. lll we investigate in Sec. IV the surfawe Brewster modes supported
by them and their main features. Next, we compare in Sec. \h#ae-field heat exchanges
between two uniaxial media to the classical ones betweelstimpic media. Finally, in order
to explain the difference in the behavior of isotropic angsatmopic materials, we discuss in
Sec. VI the transmission factor in detail between two umibixiedia and in Sec. VII we present
our conclusions.

2. Radiative heat transfer between anisotropic media

Let B; and By be two anisotropic semi-infinite bodies, filling respedijvéhe regionsz < 0
andz > d and leaving a vacuum gap between them. In order to ensuré@nsiy process, we
assume that thB; are in local thermal equilibrium at a temperatdyewith T; # T,. The heat
flux P between the two bodies is given by

P(Tl,Tz,a) = A dA - <S>, (1)

whereS = E x H is the Poynting vector andl;» is any surface that separates the two bodies.
By taking such a surface to be a plane defined byz, (0 < 7y < d) and using the (transverse)
translational invariance of our system, the previous egoaimplifies to

P(T1, T2,8) = A(S), @)

showing that only the-component of the Poynting vector is needed. After a sttéaghard
calculation, the latter can be conveniently written as [3]

*dw
)= [ Sele(.T) - 0w ) (Su). ®
0 Z4TT
where we identify the mean energy of a harmonic oscillator
hw
e(&),T) = The (4)



and also the averaged spectral Poynting vector [3]

(Sw) = 2ReTr{/Adr1| (G(r,r’)dzo“'z’GT(r,r’) —0ZGT(r7r’)dZ’G(r,r/))] . (B

Z=z=79
wherer =r | +zandG(r, r') is the electrical Green'’s dyadic, satisfying

— g wz ’ /

[DxDx—Cze(r,w)}G(r,r,w):é(r—r)ﬂ. (6)
Moreover, we have introduced Boltzmann'’s constgtPlanck’s constantizh; the T symbol-
izes hermitian conjugation and Tr thex3 trace.

In order to evaluate the heat flux in the given geometry we hawdetermine the Green'’s
dyadic inside the gap region. This can be done by considémmgultiple scattering of a plane
wave due to a source inside the gap [23]. Details and the fkpassion for the Green’s dyadic
can be found in appendix A. When inserting the resulting esgiom in Eq. (40) into the heat
flux formula, we find

- d?k

(Sw) = '/(ZH)ZT(w,K;d). @

The integral is carried out over all transverse wave veators(ky, ky)! including propagating
modes withk < w/c and evanescent modes with> w/c, wherec is the velocity of light in
vacuum. The energy transmission coeffici€fi,  ; d) is different for propagating and evanes-
cent modes and can be stated as

Tr[(1 - RIR2)D2(1 - RyRHDT], k< w/c

8
Tr[(R} - Ro)D2(Ry — RI)DW2 e 2% k> woyc (®)

T(w,K;d):{

wherey = /w?/c? — k2 andRRy, R, are the 2 2 reflection matrices characterizing interfaces.
By writing them a bit more explicitly,

s sp
Ri= | bl Thele) ©

we see that their elememé”v are the reflection coefficients for the scattering of an incgm
A-polarized plane wave into an outgoiiig-polarized wave. Note that expression (8) is very
general, as it in principle applies to any crystallogragritsotropy, both electric and magnetic.
In the isotropic limit they reduce to the usual Fresnel cokfits

¥ — /& (w)w?/c2 — k2
¥+ /& (w)w? /2 — k2’

riSS(w, K) =

PP, k) = Ei(W)y — gi(w)wz/CZ—KZ,
& (W) + /& (w)w?/c? — k2
rP(w,k) =rP%(w,k) =0, (10)

and we see that the matrices become diagonal. In additiohawesintroduced the matriR1?,
defined by .
DY = (1 — RyRoe2M) 1, (11)

which gives rise to a Fabryé&pot-like denominator fof (w, k;d) in the isotropic case.



From Egs (3), (7) and (8) we see that, once the reflection cestrare known, it is possi-
ble to determine the heat flux between two arbitrary anigadreemi-infinite bodies kept at
fixed temperature3; and T,. Moreover, in order to have an independent check, we verified
that Eq. (7) also can be derived from the general scattedngdlism derived on Ref. [24].

In the following we will use these expressions to discusshibat flux between two uniaxial
anisotropic materials with their optical axes normal toittterface.

€

z

Figure 1. Sketch of two porous slabs with different temperatures aohby a vacuum
gap.

3. Porous Materials

The structures investigated in this paper are depicteddnlFiThey are two semi-infinite media
composed by a host isotropic material, defined by its comglelectric functione,(w) =

& (w)+igll(w) (whereg(w) > 0), with uniform cylindrical inclusions oriented in the dation
orthogonal to the surface as shown in Fig. 1. These inclgsioturn are filled by a medium of
dielectric permittivityg;, that is also assumed to be isotropic. When the size of theseptative
unit cell is much smaller than all the other characteristialess involved, a suitable volume
average of the material’s local electromagnetic respoasée made. In our case, the emerging
azimuthal symmetry in this long wavelength limit gives rieeeffective uniaxial crystals with

a permittivity tensor of the form

E=g e+l ee (12)

whereey, g, ande, are orthogonal unit vectors ¥ y, andz direction. The parallel and per-
pendicular components can be derived from the Maxwell-Eareffective medium theory
(EMT) [25, 26]

§(1+f)+en(1-1)
§(1—f)+en(1+ f)’
g =en(1-f)+4gf, (14)

£H = ¢&h (13)

where f is the volume fraction of inclusions. For the structure édeed in this work the
deviation from the exact result of homogenization given efdkR[28, 29] is small even for
relatively high filling factors such a§ = 0.5. Hence, we will discuss the heat flux between
porous media with the Maxwell-Garnett expressionffar [0,0.5] in this work.



The condition of long wavelengths sets a limit to the lattoastant of the inclusions for
which the EMT can be used. In the far-field regime this condits fullfilled when the thermal
wavelengthy = he/kg T is much larger thaa. In the near-field region the contributing modes
at a distancel above the porous material have a lateral wavelength whipleris ord. For
Kk = 2m/a (which corresponds to a lateral wavelengjithe evanescent waves are damped as
exp—+/(21m/a)2 — w?/c2d] ~ exp(—(2m/a)d) in the non-retarded near-field region above the
porous material. It follows that the contribution to the hifax is dominated by evanescent
waves with lateral wavelength larger tharif d > a/(2m). On the other hand, one can argue
that a nonlocal model for the permittivity is necessary @ thteral wave vectorg are on the
order ofrr/a. Since the exponential in the transmission coefficient in(Bgfor k > w/c sets a
cutoff for k of the modes contributing to the near-field heat flux whick:i$/d, one finds that
alocal EMT description is permissibledf> a/m. Hence, for a given lattice constaabf the
inclusions the validity of the EMT in Eq. (13) in the near fiejime is restricted td >> a/m.
Artificial structures as depicted in Fig. 1 can havesaon the order of 100nm [22] so that the
distances for which the EMT can be considered as appropnitités case are abodt> 30 nm.
Nonetheless, chemically produced nanoporous materialsttew smaller structures [27] so
that we will consider distancese [10nm 100um].
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Figure 2. Plot of the dispersion curves (white dashed lines) from B).i{2the (w,k)
plane for filling factors (a¥ = 0.1, (b) f = 0.3, and (c)f = 0.5. The white dash-dotted line
represents the light line in vacuurw & kc). Furthermore the dark (blue) areas mark the
region for whichy, is purely real, whereas the bright (red) areas are the regions fohwhic
Yp is purely imaginary.
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Figure 3. Plot of Ir@l/|rp7p|2) in (w, k) plane for (a)f = 0.1, (b) f = 0.3, and (c)f = 0.5.

4. Surface and Brewster modes in porous Media

Let us study the surface waves supported by these media \Whgrate sufficiently far away
from each other so that any coupling of evanescent wavesecaadiected. By definition, these
surface waves are resonant surface modes and thereforetarenthed by the poles of the

reflection coefficients of these media. For out-of-planeaxial media the components of the
reflection matrix are

r&s(wa K) = ;r'; ;za (15)
_H% %

Fpp(@,K) = PEETS (16)

rs7p - rp73 = 0, (17)

whereys, are given by the solutions of Fresnel equations in the amipimt material [30]
Ys = \/ £ W?/c? — K2, (18)
3
Vo= /€ w?/c?— —L k2, (19)
€L



and hence it follows at once that the surface modes are diedrhy

(W +y) =0, (20)
(&1 + W) =0. (21)

It is straightforward to verify that in this case only the ged equation above can be satisfied,
meaning that only p-polarized surface waves can exist d@nhteeface of these media. Solving
that equation explicitly fok gives us the sought dispersion relation of surface waves

w [e(g—1)
S e sy 22
K Cc £H8J_—l ( )

but one must be aware that (22) a® branches, and only one is connected to surface Modes
Since their dispersion relation involves and e, , these waves are also called extraordinary
surface waves [31], and they reflect the material anisot\hene = €, = €, Eq. (22) degen-

erates into the well-known dispersion relatioa- w/c\/€/(& + 1) of surface modes supported
by a semi-infinite isotropic medium (bounded by vacuum) veittlielectric permittivitye. In
Fig. 2 we plot the dispersion curves for silicon carbide (Si@@h vacuum inclusions for differ-
ent filling factorsf = 0.1, f = 0.3 andf = 0.5. The dielectric function of SiC is described [32]
by the simple model

w? — wf —iwr
w? — Wt —iwr
wherew = 1.827-10%s 1, oo = 1.495-10%s 1, = 0.9-10%s 1, and e, = 6.7 denote
respectively the longitudinal and transversal opticalrmivopulsation, the damping factor and
the high frequency dielectric constant, respectively. ritheo to avoid the inherent difficulties
of multiple possible interpretations of complex dispensielations [33], we have deliberately
neglected the host material losses to represent thesesclitverelevance of this approximation
can be checked by comparing Fig. 2 with Fig. 3, where we pletrdilection coefficients of
dissipating porous material. In order to distinguish betwevanescent and propagative waves
inside the effective medium, solutions of Eq. (22) are supeosed in Fig. 2 to a two-color
background. This background is a binary representatiofi efsgn(gjw?/c? — g k?/€.). In

the blue zoneg < 0 so that only evanescent modes can exist, and converséhe ied zones
we havel > 0 and all modes are propagative. Similarly the light lle= ck allows us to
distinguish between the radiative (propagative) and timenadiative (evanescent) modes inside
the vacuum. Notice that, in order to satisfy Eq. (22) botand sgiiw? /¢ — k2) must be the
same. In other words, frustrated modes cannot satisfy gpeediion relation (22).

Now let us turn to the description of modes supported by otifical structures. For low
filling factors we note in Fig. 2 (a) the existence of two sagfanodes. The first one (at a lower
frequency) corresponds to the classical surface phontarifom (SPP) supported by a massive
SiC sample [34]. That surface mode is also present in isigt®if. The most interesting feature
of Fig. 2 (a) is, however, the appearance of a second surfade at higher frequencies, because
it is a signature of the anisotropic character of the mdtand therefore a direct consequence
of the vacuum inclusions in the host medium. As the porositydases, both surface waves
split. Beyond a critical filling factor betweeh = 0.3 and f = 0.5, the upper surface wave
disappears as is seen in Fig. 3. Nevertheless the SPP willielxists continue to move toward
the smaller frequencies, i.e., tor. Above the light line, we see that the anisotropy gives rise
to two different types of Brewster modes. At high frequenay rgcognize the usual modes

1The other branch is connected with the so called Brewster sm[@83, that are propagating waves for whigp
vanishes.



where the reflection coefficient [Fig. 3 (a)] of the effectiveedium vanishes. In addition to
these modes, different Brewster modes appear dependingeoratue of filling factor. Also,
we see on the reflection curves (Fig. 3) that the Christiapsent [35] for which the reflectivity
is zero for allk does not depend on the porosity. Indeed, an inspection oésgions (13) and
(14) shows that the condition for the Christiansen pointeftiost materiady, = 1 implies that
g =1ande;, =1 so that, according to (17), the reflection coefficients skani

5. Heat flux between porous media

Before we discuss the influence of the inclusions on the hagt\le show in Fig. 4 the results
of the mean Poynting vectdf,) between two semi-infinite SiC bodies at fixed temperatures
T1 = 300K andT, = OK. First of all one can see that the heat flux becomes verg l&og
distances much smaller than the thermal waveledgth= hc/kgT (which is about B8um

for T = 300K). Atd = 10nm the heat flux for the two SiC bodies is about 1000 timegelar
than the heat flux between two black bodies. This increasedgalthe frustrated total internal
reflection and to the coupled surface phonon polariton m{@lesn the propagating regime,
i.e., for distances larger than, the heat flux is determined by Kirchhoff-Planck’s law and is
limited by the black-body value. Note, that the heat flux imdwated by the p-polarized modes
for distances smaller than 100nm and larger thagrbQwhereas for distances in between it is
dominated by the s-polarized modes.

1000
100

0f

<S;>/Sgp

0.1
10® 107 10% 10° 10*
d (meters)

Figure 4. Heat flux between two SiC plates over distance With 300K andT, = 0K. The
flux is normalized to the value for two black bodiss = 4596 Wm 2. The contribution
of the s- and p-polarized part are shown as well.

Now, we introduce the inclusions by using the Maxwell-Géregpression in Eq. (13) and
(14). We use the same filling factor for both materials, st Wehave a symmetric situation.
In Fig. 5 we show the resulting heat flux normalized to the @slior the two non-pourous SiC
plates shown in Fig. 4. We find that for distances smaller #@0nm and larger thanyim the
heat flux becomes larger when we add air inclusions, whemrastermediate distances the
heat flux is reduced.

In order to see how the s- and p-mode contribution is changatidoporosity, we show in
Fig. 6 (a) and (b) the plots for the separate contributiorss @hd p-polarized modes. Itis clear
that the p-polarized part of the heat flux gets enhanced Ffalisthnces when compared to the
isotropic case, regardless of the filling factor. The s-poéal part in turn gives a larger heat flux
for distances larger than aboupiin and a smaller heat flux for distances smaller thaml
Therefore, the smaller heat flux found in Fig. 5 for internag¢elidistances is associated to the
dominance of s-polarized modes in that distance regime.
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Figure 5. Heat flux between two porous SiC plates over distance with 300K and
T, = 0K. The flux is normalized to the value for two SiC plates shown in Fig. 4.

In summary, by introducing inclusions we find for large andaBidistances an increase
of the heat flux. For the propagating reginte Ay) this can be understood from a simple
argument: the vacuum holes simply dilute the material s§ #t@ording to Kirchhoff’s law,
the reflectivity is decreased and hence the emissivity i®ased. In fact, fof = 1 one would
retrieve the black body result, since in this case the réfigcis zero. On the other hand,
there is no such simple argument for the increased heat fltheimear-field region. Here, it
is necessary to study how the coupled surface modes, whieftlge main contribution to the
heat flux for distances smaller than 100 nm, are influencetdintroduction of the inclusions.
This will be done by inspection of the transmission coeffitia the next section.

6. Transmission coefficient

As mentioned before, for the small distance regimie<(100nm) the heat flux between two
isotropic semi-infinite SiC-bodies is solely dominated hg p-polarized contribution. This
remains true for the porous SiC bodies. In fact, the domieari¢he p-polarized contribution
becomes even greater with increasing filling factors. Hetecenderstand the observation that
by introducing some porosity the heat flux becomes largsufitces to study the p-polarized
contribution.

In Fig. 7 we show the transmission coefficiditw, k;d) in the (w, k)-plane for different
filling factors and a distanog= 100 nm. In Fig. 7 (a) one can s&g(w, k;d) for two isotropic
SiC plates. HereTp(w, k;d) is one or close to one for the propagating modes, the total-int
nal reflection modes and the coupled surface phonon patarita the plotted region one can
mainly see the coupled surface phonon polaritons, whichesgonsible for the large heat flux
at small distances. Now, fdr= 0.1 one can see in Fig. 7 (b) that a second coupled surface mode
appears due to the air inclusions. In addition, the couplefdse mode of the bulk SiC is shifted
to smaller frequencies. When increasing the filling factag [ (c) and (d)] the upper coupled
surface modes shift to higher frequencies and become lggstiamt for the transmission coef-
ficient. On the other hand, the low frequency surface modiisfgtther to lower frequencies.
Between the two coupled surface mode branches a band afatedinternal reflection modes
is formed which gives also a non-negligible contributiorte transmission coefficient.

In order to get further information we now consider the sp@echean Poynting vectqS,,)
defined in Eq. (7) for p-polarization only. We have plotted thuantity in Fig. 8 at the same
distance as before, i.el,= 100nm, and again for different filling factors. As in Fig. 7eocan
see the strong contribution of the two coupled surface medenances, which are shifted in
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Figure 6. As in Fig 5 but for the (a) s- and (b) p-polarized contributioly.on

frequencies when changing the filling factor. Moreover ghiéing of the primary surface mode
to lower frequencies by itself also enhances the flux, as awstift brings that surface mode
closer to the peak wavelength of blackbody radiation asgiyethe Wien’s law. Furthermore,
one can now observe, that when increasing the filling fattetdw frequency resonance is not
only shifted to smaller frequencies, but the resonancesis gétting stronger.

The study can now be completed when considering the measntiasion factor for the
p-polarized modes, that was introduced in Ref. [9] as

To(k) = — [ dufuTuid) (24)

with u = hw/kgT and f = u?e"/(e" — 1)2. It represents the mean transmission coefficient of
a mode specified by it's wave vectar for a given temperatur@ and a small temperature
differenceAT between the two bodies. By means of this quantity the heatimbe rewritten

in a Landauer-like form [9]

m k3T [dk
=5 o [ 5 KTp(KAT. (25)

Note, that forkd > 1 andk > w/c the transmission coefficieri,(w, k;d) is exponentially
damped [see Eq. (8)] and therefore also the mean transmifsitor T (k). This damping
determines the wave vector cutoff and hence the numbertefsstantributing to the heat flux.
Now, in Fig. 9 we plofT (k) for a given distance af = 100nm and different filling factors
normalized to the mean transmission factor for two semiitgiSiC bodies. Fof = 0.1 the

($)
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Figure 7. Transmission coefficieTy(w, k;d) in the (w, k)-plane for two porous SiC slabs
with different filling factors (a)f =0, (b) f =0.1, (c) f = 0.3, and (d)f =0.5. The distance
is fixed atd = 100 nm.
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Figure 8. Spectral mean Poynting vect{&,) defined in Eq. (7) for two porous SiC slabs
with different filling factorsf = 0,0.1,0.3,0.5 considering only the p-polarized contribu-
tion. The distance is fixed at= 100 nm.

mean transmission coefficient for the porous SiC increawdatermediate but decreases for
very largek. The increased mean transmission factor is due to the seoopded surface mode
and the frustrated modes, whereas the lower value for laeye wectors can be attributed to
a stronger cutoff in the transmission coefficient, which ngethat the number of contributing
modes is decreased. The enhancement of the transmissiondae to the surface mode pre-
vails and leads to an enhanced heat flux at that distance ahinemechanism is responsible for
the enhanced heat flux fér= 0.3. On the other hand, for larger filling factors the curvesgjea
slightly for intermediatec compared to the curve fdr= 0.3. The contribution in that interme-
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Figure 9. Mean transmission coefficient defined in Eq. (24) for diffefilling factors nor-
malized to the isotropic casé & 0). The distance is fixed a@t= 100nm and the tempera-
ture atT = 300K.

diate region is due to the second coupled surface mode beatttine frustrated modes. But for
very largek the mean transmission coefficient increases comparédt6.3. This means that
by introducing a higher porosity we soften the cutoff of tremsmission coefficient. Hence, the
number of modes contributing to the heat flux is increasedesults for large filling factors in
a further enhanced heat flux.

The dependence of the cutoff on the filling factor for lakgean easily be discussed for the
transmission coefficien,(k, w;d). It was found in Ref. [9] that the cutoff region, i.e., where
To(k, w;d) is exponentially damped, is given by

2 1
Kiso > log (Im(s)) . (26)

when considering two isotropic semi-infinite bodies at thdace mode resonance frequency
[see also Refs. [36]]. For the uniaxial anisotropic caseoasicered here, this relation changes
to ) 1
Im<m>> 2d

where the permittivities have to be evaluated at the sunfaede resonance frequency of the
semi-infinite anisotropic body (see Appendix B). In Fig. 18 show a plot ofkyni/Kiso Over
the filling factor. It is seen that by introducing the air insions the cutoff first decreases and
then monotonically increases. This is the same qualitdi@feavior as observed for the mean
transmission factoll (k) in Fig. 9 for kd > 1. This reasoning confirms that the number of
contributing modes is the main mechanism for increasinghta flux at small distances and
large filling factors § > 0.3).

Kuni > Iog( (27)

7. Conclusion

We have presented a detailed study of near and far field heafér between two flat uni-
axial media made of polar materials (in our case, SiC) in Wwiigdindrical inclusions drilled
orthogonally to surfaces are uniformally distributed.

After applying the classical stochastic electrodynamiotly to anisotropic materials we
have shown that, for short distances, the heat flux betwednreadia can be significantly larger
than those traditionally measured between two isotropierias in the same non-equilibrium



1.04

0.96

Kuni / Kiso

0.92

0.88

0.84

0 01 02 03 04 05
filling factor f

Figure 10. Plot of the normalized cutoff valug/ kiso over filling factor f.

thermal conditions. For small filling factors we have detieed that this enhancement stems
from additional surface waves arising at the uniaxial makemacuum interface, clearly indi-
cating that such increase is intrinsically connected te@ndpy. Indeed, we did calculations
for isotropically rarified SiC plates with low filling facter(f < 0.1) and found that the heat
transfer modification for is much smaller. In contrast, farger filling factors { > 0.3) we
have shown that, after a thorough analysis of the transomdaictor, the enhancement in heat
transfer arises mainly from the increased number of modefibating to the flux.
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B. gratefully acknowledges support from the Deutsche Ak@deler Naturforscher Leopoldina
(Grant No. LPDS 2009-7). This research was partially sujggoby Triangle de la Physique,
under the contract 2010-037T-EIEM.

A. Green’s dyadic in the gap region

In order to construct the Green'’s dyadic in the vacuum gapnsestiart with the Green'’s dyadic
in free space. Iz > Z Weyl's expansion for the Green'’s dyadic is [37]
2k ek x=x)

n_ [ Y2 r i(z—2)
G(r,r)f/(zmz TR 28)

with y = /w?/c? — k2, x = (x,y)! andk = (ky, ky)". The unit dyadid is the unit dyadic in the
polarization basis and is defined as

1=8®a] +a;0a]. (29)
The polarisation vectors for s- and p-polarized waves arengby
v 1 - +_C K
= |8( and & = Ey'z/rz . (30)

By construction both polarization vectors are orthogoRat. propagating waves they are also
normalized. The Fourier componetitk;z Z) of the Greens dyadic is defined by

.2 _ )
G(r.r') :/(2752 G(k;z,Z)exxx), (31)



The above expression for the Green's dyadic representselldedfi a right going wave at
of a source of unit strength placedztIf a semi-infinite medium is located at> d then this
wave will be reflected so that the Green’s dya@ig;z,Z) reads az > Z

CGa(k;z,7) = 5 []lein(Z—Z') +e2iwdeiw(z+i>]Rz] (32)
‘
where we have introduced the reflection matrix
Ry = ; HENEEY (33)
i,j={sp}

with the reflection Coef‘ficienta%j and the polarization vectodg, = —c/(kw) Kk, Ky, K?)t
andag = &7 . If there is now a second semi-infinite mediunzat 0 with a reflection operator
defined as
Ri= Y rfig od (34)
i,j={sp}
the waves in that cavity will be multiply reflected at the bdaries az = 0 andz = d so that
(23]

Ga(k;2Z) = i 16#E7) | Pdgin@d)R,
r

+ e2iyrdeiyr(zfz')R1R2 (35)

+ e4iwdeiiyr(z+zl)]R2R1R2 +.. :| .

Summing up all contributions we get

Ga(K:2Z) = 2'7 D7) ]D21R2e2iyrdeiyr(z+z')} (36)
1%
where we have introduced
D = (1 — RyRpe?"9) 72, (37)
D% = (1 — RoR.2M9) "2, (38)

The expression in Eq. (36) is not yet the complete intragasieen’s dyadic, since we have
not considered the waves which start franas left going waves and arrive after being reflected
at the boundary at= 0 atz > Z. With the same reasoning as f6i(k;zZ) we find for this
contribution

Gg(k;z7) = i []DlzIRleiW(Z*i ) + DR, R, 2NN (Z Z>] (39)
r
Finally, the intracavity Green’s dyadic is given by the suinkq. (36) and (39) yielding

Gintra = 2'— {11)12 (1@%(21) i Rleiw<z+z/>>
¥

(40)



B. The resonances in an anisotropic material

The precise location of resonances can be analyticallyrd@ied from expression (22) by
solving
€L = 1 (41)

Frequencies which satisfy this condition are resonanapéecies of medium because they
correspond to a flat region of the dispersion curve in(idogk) plane and therefore to strong

density of states. Using expressions (13) and (14) thistexuean be recast into the following

form

ag’ +bef +cen+d =0, (42)
with

a=(1-1f)? (43)

b=g(1-f)(2f +1), (44)

c=(1+f)(g*f —1), (45)

d=¢g(f-1). (46)

The solutions of this equation can readily been calculatdguthe Cardano’s method [38].
When inclusions are made by pure vacuum @.e= 1), these solutions are real and read

2 /7P eod L _a /27, 2m
Ehn=2 3 cos[ 3arccos< 5 —p3>+ 3} 47)

_ 3ac—b? and _ 27a?d — 9abc+ 2b°
R a= 2783

forn=0,1,2. with

(48)

Only one of these solutions is positive and must be consdovedarch the resonance frequen-
cies.



