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We suggest to exploit the shape-dependence of the near-field heat transfer for nanoscale thermal
imaging. By utilizing strongly prolate or oblate nanoparticles as sensors one can assess individual
components of the correlation tensors characterizing the thermal near field close to a nanostructured
surface, and thus obtain directional information beyond the local density of states. Our theoretical
considerations are backed by idealized numerical model calculations.
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I. INTRODUCTION

While profound theoretical understanding of thermally
generated electromagnetic fields close to material sur-
faces has already been obtained some time ago [1–4],
accurate experimental studies of such fluctuating ther-
mal near fields at distances on the order of or even sig-
nificantly shorter than the thermal wave length from a
sample’s surface have only recently become possible. Hu
et al. have measured the radiative heat flux between
two glass plates spaced by a micron-sized gap [5], and
reported near-field heat transfer exceeding the far-field
limit set by Planck’s law of blackbody radiation. Chen
and co-workers have studied the near-field heat flux be-
tween a sphere and a flat substrate [6, 7], focusing on
the role of surface phonon polaritons, and observed heat
transfer coefficients even three orders of magnitude larger
than the blackbody radiation limit. Rousseau et al. have
made precise measurements of the radiative heat trans-
fer between spheres with diameters of 22 and 40 µm at
distances from 30 nm to 2.5 µm from a plate [8], and
obtained impressive agreement with predictions based
on fluctuational electrodynamics [1, 2]. This finding is
conceptually important since it indicates that fluctua-
tional electrodynamics, which is a macroscopic theory,
can be relied on at least up to the smallest distances ac-
cessible in this experiment, without having to account
for effects caused by a nonlocal optical response [9, 10].
Moreover, a device termed Near-Field Scanning Ther-
mal Microscope (NSThM) has been designed by Kittel
et al. [11–13] This instrument allows one to record the
near-field heat flux at probe-sample distances even down
to a few nanometers, but still further efforts are required
to achieve accurate calibration. A complementary set-up
dubbed Thermal Radiation Scanning Tunneling Micro-
scope (TRSTM) has enabled De Wilde et al. to take
images of thermally excited surface plasmons, and to
demonstrate spatial coherence effects in near-field ther-
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mal emission [14]. This notable growth of experimental
research on thermal near-field phenomena is triggered,
on the one hand, by a wide variety of possible technolog-
ical applications, ranging from the design of nanoscale
heaters for use in heat-assisted magnetic recording or
heat-assisted lithography [8] to near-field thermophoto-
voltaics [15–19]. On the other hand, there is a need for
further insight into basic small-scale phenomena. For ex-
ample, at very short distances nonlocal effects ultimately
must come into play [9, 10], and the use of macroscopic
fluctuational electrodynamics as a theoretical framework
might no longer be sufficient. Thus, thermally induced
near-field effects constitute an emerging subject which
requires further experimental and theoretical investiga-
tions; of particular importance is the identification of
experimentally observable quantities against which theo-
retical models can be tested.

It has already been demonstrated experimentally that
the NSThM opens up the possibility of thermal imag-
ing of surface structures with nanoscale resolution [20],
since the surface topography leaves its imprint in the lo-
cal density of states (LDOS). In this paper we take a
further step in this direction: We argue that one can ob-
tain information even beyond the mere topography if the
NSThM sensor is appropriately shaped. This is due to
the fact that in principle not only the LDOS, but even the
individual diagonal components of the fluctuating fields’
correlation tensors are measurable; these components are
singled out when employing strongly prolate or oblate
spheroidal particles as sensors. Therefore, when scanning
a surface at nanometer distances with such a sensor, the
NSThM-signal does not give a one-to-one image of the
surface profile, but rather provides information on how
that profile affects the directional properties of the fluc-
tuating thermal near field. We first sketch the theoretical
idea underlying this proposal in Sec. II, and then present
in Sec. III some numerical model calculations which illus-
trate its principal feasibility. These calculations necessar-
ily are strongly idealized, and do not refer to an already
existing experimental set-up; nonetheless, they indicate
a possible direction for future developments.



2

II. THE BASIC PRINCIPLE

Consider a substrate with temperature TS. The elec-
tric field E(r, t) close to its surface, generated by ther-
mal fluctuations inside the sample, then is characterized
in terms of its correlation tensor WE

jk(r, r′, ω), which is
determined by an ensemble average

〈Ej(r, ω)E∗
k(r′, ω′)〉 = WE

jk(r, r′, ω) δ(ω − ω′) , (1)

where Ej(r, ω) are the field’s Fourier components. The
magnetic correlation tensor WH

jk(r, r′, ω) is defined in an
analogous manner. According to fluctuational electrody-
namics [1, 2], these correlation tensors are proportional
to the Bose-Einstein function evaluated at the tempera-
ture of the sample,

Θ(ω, TS) =
~ω

2
+

~ω

exp[~ω/(kBTS)] − 1
. (2)

Now assume that a nanoparticle with electric polarizabil-
ity tensor αE(ω) is brought into this fluctuating near field
at a position r, such that its distance from the surface still
remains appreciably larger than its characteristic linear
size, while that size should be smaller than the thermal
wavelength at TS. Then the field introduces a dipole mo-
ment p(t) in the particle which in its turn interacts with
the field, such that the power

〈ṗ(t) · E(t)〉 (3)

=

∫ +∞

−∞

dω (−iω)
ε0

(2π)2
tr

(

αE(ω) · WE(r, r, ω)
)

is dissipated in the particle, resulting in its heating. The
right-hand side of this equation still is written in a man-
ner which shows that it does not depend on the choice of
the particular coordinate system used for its evaluation,
as the trace over the product of the polarization tensor
and the correlation tensor manifestly remains invariant
under coordinate transformations. When adopting a co-
ordinate system in which the tensor αE(ω) is diagonal,
with diagonal elements αE

k (ω), this expression (3) takes
the more familiar form [21–24]

〈ṗ(t) · E(t)〉 (4)

= 2
3

∑

k=1

∫ +∞

0

dω ω Im
(

αE
k (ω)

) ε0

(2π)2
WE

kk(r, r, ω) .

It is essential to keep in mind that here the diagonal
components WE

kk(r, r, ω) of the sample’s field correlation
are given in the principal-axis system of the particle’s
polarizability, not in a system attached to the sample’s
geometry or orientation. If all elements αE

k (ω) are equal,
as in the case of a nanosphere, the integrand simply is
proportional to the trace of the correlation tensor, i.e.,
to the spectral energy density

〈uE(r, ω)〉 =
ε0

(2π)2

3
∑

k=1

WE
kk(r, r, ω) , (5)

0

40

80

54321
0

4

8

r α
E

r α
H

Rb / Ra

electric

magnetic

FIG. 1: Ratios r
E/H

α ≡ Im(α
E/H

a )/Im(α
E/H

b
) for a spheroidal

gold nanoparticle at ωth = 1014 s−1. The particle’s volume is
kept constant when the aspect ratio Rb/Ra is varied.

which is the case considered usually [21–24]. If, how-
ever, the elements αE

k (ω) differ significantly from each
other, the dissipated power can be dominated by indi-
vidual components WE

kk(r, r, ω). This is the principle we
are going to explore.

For obtaining a convenient expression for the net power
flow PS↔P between the nanoparticle and the substrate,
we factorize the correlation tensor in the form

ε0

(2π)2
WE

kk(r, r, ω) = Θ(ω, TS)DE
kk(r, ω) , (6)

so that the quantities DE
kk(r, ω) carry the same dimension

(sm−3) as the local density of states (LDOS) [25]. Then
two additional mechanisms have to be accounted for: On
the one hand, as strongly emphasized by Dedkov and
Kyasov [23] and by Chapuis et al. [24], the magnetic part
H(r, t) of the fluctuating near field gives rise to the induc-
tion of an effective magnetic dipole meff(t) in the particle,
and hence to a further contribution 〈ṁeff(t) ·H(t)〉 to the
dissipated energy. On the other hand, there also is a flow
of energy from the particle, with temperature TP, to the
sample. In total, this results in the formula

PS↔P = 2

3
∑

k=1

∫ +∞

0

dω ω
(

Θ(ω, TS) − Θ(ω, TP)
)

(7)

×
(

Im
(

αE
k (ω)

)

DE
kk(r, ω) + Im

(

αH
k (ω)

)

DH
kk(r, ω)

)

.

Here we assume that the principal-axis system of the
magnetic polarizability tensor αH(ω) coincides with that
of its electric counterpart. A particularly favorable case
occurs for spheroidal nanoparticles (i.e., for rotational
ellipsoids with two equal semi-axes Rb and a different
third semi-axis Ra), for which the polarizabilities αE

k (ω)
and αH

k (ω) are known analytically [26]. In Fig. 1 we plot

the ratios r
E/H
α ≡ Im(α

E/H
a )/Im(α

E/H
b ) of the absorptiv-

ities along (a) and perpendicular to (b) the axis of ro-
tation for spheroidal Au nanoparticles at the frequency
ωth = 1014 s−1, roughly corresponding to the dominant
thermal frequency at T = 300 K. We employ the Drude
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FIG. 2: Cross section, and 3D plot, of the surface structure
employed in the numerical model calculations. The orienta-
tion of the spheroidal nanoparticle here corresponds to the
scan of the near-field heat transfer shown in the later Fig. 5.

model

ε(ω) = 1 −
ω2

p

ω2 + iγω
(8)

for the permittivity, with plasma frequency ωp = 1.4 ·
1016 s−1 and relaxation rate γ = 3.3 ·1013 s−1 for gold at
room temperature, and keep the particle’s volume con-
stant when varying the aspect ratio Rb/Ra. As expected,
one observes rE

α ≫ 1 for prolate, rice grain-like parti-
cles (Rb/Ra ≪ 1), whereas rH

α ≫ 1 for strongly oblate,
pancake-like particles (Rb/Ra ≫ 1), in which the mag-
netic fields can easily induce eddy currents. We expect
that the model yields reliable results at least in the in-
terval 1/5 ≤ Rb/Ra ≤ 5 of the aspect ratio [27].

III. NUMERICAL MODEL CALCULATIONS

For our model calculations we take a substrate which
is perfectly flat except for a square pad with 5 nm height,
30 nm width, and rounded edges, as depicted in Fig. 2.
The coordinate system is oriented such that the x-y-plane
coincides with the base substrate plane; the x- and y-
axes being parallel to the pad’s edges. We again assume
that the permittivity of the substrate is described by the
Drude model with parameters appropriate for gold.

In Fig. 3 a) – c) we show the “electric” elements
DE

kk(r, ω) as defined by Eq. (6), evaluated for ω = ωth

at a distance of 30 nm above the base substrate plane.
These elements have been computed by means of a per-
turbative approach to first order in the surface pro-
file [28]. The sum of these three quantities gives the
electric part of the LDOS, plotted in Fig. 3 d). Whereas
the LDOS merely yields a blurred image of the under-
lying surface topography [20], the individual diagonal
elements DE

kk(r, ω) contain interesting directional infor-
mation. The corresponding results for the “magnetic”
elements DH

kk(r, ω) are shown in Fig. 4.
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FIG. 3: a) – c): “Electric” elements DE

kk(r, ω) (k = x, y, z)
for the model surface depicted in Fig. 2, computed for ωth =
1014 s−1 at a distance of 30 nm above the base x-y-plane. The
dielectric properties of the substrate are given by the Drude
permittivity with parameters for gold. d): Electric LDOS, as
corresponding to the sum of a) – c).
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FIG. 4: As Fig. 3, for the “magnetic” elements DH

kk(r, ω).
Observe that the scales differ from those in Fig. 3.

For understanding the message contained in these fig-
ures, it is helpful to also consider the normalized eigen-
vectors f (j)(r, ω) of the 3 × 3-matrix DE(r, ω), and the
corresponding eigenvalues d(j)(r, ω), together with their
magnetic counterparts [29]. Intuitively speaking, the
eigenvectors give the principal directions of the local field
fluctuations; of course, these directions are determined
by the surface profile. The eigenvalues then specify the
strength of the partial fluctuation associated with the re-
spective principal direction. In compact matrix notation,
one now has

DE(r, ω) = S dS† , (9)

where the jth column of the matrix S is given by the
vector f (j)(r, ω), the matrix S† is the adjoint of S, and d
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is the diagonal matrix with d(j)(r, ω) at the jth position
on the diagonal line. Written out in components, this
implies

DE
kk(r, ω) =

3
∑

j=1

d(j)(r, ω) |f
(j)
k (r, ω)|2 . (10)

The square |f
(j)
k (r, ω)|2 obviously specifies the weight

with which the eigenvalue d(j)(r, ω) contributes to the
fluctuations along the k-direction. Thus, the individual
diagonal elements DE

kk(r, ω) express the distribution of
the entire fluctuation strength, which in this language
corresponds to the sum

∑3
j=1 d(j)(r, ω) and thus is pro-

portional to the electric energy density (5), over the indi-
vidual directions. Analogous remarks apply to the mag-
netic fluctuations. This kind of directional information
is, in principle, contained in the thermal near field above
a nanostructured surface, and allows one to deduce prop-
erties of the structure itself. The experimental task is to
actually extract such information from given laboratory
samples, and the theoretical task is to devise methods for
doing so.

To this aim, we suggest a further development of the
NSThM: The tip of this instrument is functionalized to
act as a thermocouple, so that the small temperature
change resulting from the energy deposited in or drawn
out of the tip translates into a measurable voltage [11–
13]. If the active volume could be given the shape of
a spheroid, the shape-dependence of the heat transfer
expressed by Fig. 1 could be exploited for assessing indi-

vidual elements D
E/H
kk (r, ω) by means of Eq. (7). Addi-

tional experimental handles would then be provided by
the choice of both the spheroid’s orientation and its ma-
terial.

In order to demonstrate the feasibility of this con-
cept, we compute the near-field heat transfer between
our model gold substrate with temperature TS = 300 K
and spheroidal nanoparticles cooled down to TP = 100 K.
For metallic nanoparticles the magnetic contribution to
the total heat transfer generally is much larger than
the electric one [23, 24], so that one has to select non-
metallic sensors when aiming at the electric components
DE

kk(r, ω). Here we consider a rice grain-like particle with
the permittivity of gallium nitride (GaN), described by
the formula [30]

ǫ(ω) = ǫ∞ +
Sω2

0

ω2
0 − ω2 − iΓω

−
ω2

n

ω2 + iγω
(11)

with parameters ǫ∞ = 5.4, S = 5.1, ω0 = 1.0 × 1014 s−1,
ωn = 9.1 × 1014 s−1, Γ = 2.7 × 1012 s−1, and γ =
7.1 × 1014 s−1; the values of the inverse relaxation times
Γ and γ have been properly adjusted to the particle’s
temperature. We choose the half-axes Ra = 40 nm and
Rb = 10 nm, so that rE

α ≈ 23.4 at ωth. These parameters
clearly fall outside the regime where the dipole model (7)
can give quantitatively accurate results. We employ this
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FIG. 5: Total heat transfer between a cooled spheroidal GaN
nanoparticle (TP = 100 K) with Ra = 40 nm, Rb = 10 nm,
and axis of rotation parallel to the x-axis, and the gold struc-
ture sketched in Fig. 2 (TS = 300 K), assuming that the parti-
cle is scanning the structure with a constant height of 30 nm.

model nonetheless, as computational tools for calculat-
ing the near-field heat transfer between nanoparticles and
structured surfaces are not yet available, and stress the
qualitative nature of the following results.

Figure 5 shows the total heat transfer according to the
model (7), with the particle oriented parallel to the x-
axis at a constant height of 30 nm above the base plane
while scanning the substrate, as previously sketched in
Fig. 2. In this case the heat flux mainly picks up the con-
tribution proportional to DE

xx(r, ωth). As a consequence,
the signal obtained here closely resembles the previous
Fig. 3 a). The slight differences between the two figures
visible above the pad’s center are explained by the fact
that DE

zz(r, ωth) contributes significantly here.
For assessing the magnetic contributions, we select a

pancake-like Au nanospheroid with Ra = 10 nm and
Rb = 40 nm, giving rH

α ≈ 8.5, and orient it along the
z-axis. The total heat transfer then is dominated by
DH

zz(r, ωth), as witnessed by the good agreement of Fig. 6
with 4 c). Thus, here the recorded heat flux provides in-
formation on a component of the magnetic correlation
tensor.

IV. CONCLUSION

In this paper we have outlined that individual diago-
nal components of the correlation tensors of fluctuating
thermal fields close to the surface of a given material
can be measured by near-field thermal imaging, if the
sensor employed for recording the heat flux is appropri-
ately shaped. Evidently this proposal still is somewhat
sketchy and idealized: On the theoretical side, there is an
urgent need for accurate computational tools for quanti-
fying the near-field heat flux between arbitrarily shaped
nanoparticles and structured surfaces; from the experi-
mental viewpoint, the development of the required sen-
sors poses a serious challenge. Thus, there may still be a
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FIG. 6: Total heat transfer between a cooled spheroidal Au
nanoparticle (TP = 100 K) with Ra = 10 nm, Rb = 40 nm,
and axis of rotation parallel to the z-axis, and the gold struc-
ture sketched in Fig. 2 (TS = 300 K), assuming that the parti-
cle is scanning the structure with a constant height of 30 nm.

long way from our present matter-of-principle considera-
tions to laboratory applications.

Yet, there are at least two reasons for exploring this
option. First, fluctuational electrodynamics is a macro-
scopic theory; it would be important to test its predic-

tions even for probe-sample distances of a few nanometers
and below, where its validity can no longer be taken for
granted. Possible deviations form the macroscopic theory
would then yield important novel insight into fundamen-
tal processes in dielectrics. For this program sensitive
observables are required; we suggest that measuring indi-
vidual diagonal components of the near fields’ correlation
tensors, which give directional weights to the total fluctu-
ation strength, might yield more information than their
traces, i.e., the local density of states. Second, leaving
theoretical considerations aside, the practical exploita-
tion of the principles outlined in this note for nanoscale
thermal imaging [20] would provide novel tools for the
diagnosis and characterization of nanostructures.
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